PointCluster: Deep Clustering of 3-D Point Clouds With Semantic Pseudo-Labeling

Point cloud classification is a fundamental problem in 3-D point cloud analysis. However, most existing methods are supervised, which requires costly and laborious annotations of large-scale point cloud datasets. This severely limits the practical applicability of point clouds. Therefore, exploring...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-14
Hauptverfasser: Liu, Xiu, Han, Xinxin, Xia, Huan, Li, Kang, Zhao, Haochen, Jia, Jia, Zhen, Gang, Su, Linzhi, Zhao, Fengjun, Cao, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Liu, Xiu
Han, Xinxin
Xia, Huan
Li, Kang
Zhao, Haochen
Jia, Jia
Zhen, Gang
Su, Linzhi
Zhao, Fengjun
Cao, Xin
description Point cloud classification is a fundamental problem in 3-D point cloud analysis. However, most existing methods are supervised, which requires costly and laborious annotations of large-scale point cloud datasets. This severely limits the practical applicability of point clouds. Therefore, exploring point cloud clustering methods, which can group point clouds into semantically meaningful clusters in an unsupervised manner, is of great importance. However, this remains a formidable challenge for humans. Here, we present PointCluster, a novel framework for deep clustering of 3-D point clouds. To enable accurate and reliable self-supervision for the clustering process, the framework introduces two semantic pseudo-labeling algorithms: prototype pseudo-labeling and reliable pseudo-labeling. We devise a three-step training process for the clustering network. First, we adopt a cross-modal representation learning approach to optimize the feature model. Second, we freeze the network parameters of the feature model and apply the prototype pseudo-labeling algorithm to optimize the clustering heads separately. Third, we use the reliable pseudo-labeling algorithm to jointly train the feature model and the clustering head in a semi-supervised manner, which enhances the overall clustering performance. The experimental results demonstrate that PointCluster achieves the state-of-the-art clustering results on public datasets such as ShapeNet. Moreover, our method narrows the gap between unsupervised point cloud clustering and supervised point cloud classification, offering a new perspective for the point cloud classification task.
doi_str_mv 10.1109/TGRS.2024.3393911
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10508401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10508401</ieee_id><sourcerecordid>3050303801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-8acce4d560baa59277d49ad0d6335dc9855b3049f07670949aab6b34351706683</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWKsfQPAQ8Jw62fzZxJu0tQqFFlvxGLKbrG5pN3Wze_Dbm9oePA0z896b4YfQLYURpaAf1rO31SiDjI8Y00xTeoYGVAhFQHJ-jgZAtSSZ0tkluopxA0C5oPkALZahbrrxto-dbx_xxPs9PnV184lDhRmZ4D9RmofeRfxRd1945Xe26eoSL6PvXSBzW_htclyji8puo7851SF6f56uxy9kvpi9jp_mpMy47IiyZem5ExIKa4XO8txxbR04yZhwpVZCFAy4riCXOei0s4UsGGfpaZBSsSG6P-bu2_Dd-9iZTejbJp00DAQwYApoUtGjqmxDjK2vzL6td7b9MRTMgZs5cDMHbubELXnujp7ae_9PL0DxFPkLpb5nZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050303801</pqid></control><display><type>article</type><title>PointCluster: Deep Clustering of 3-D Point Clouds With Semantic Pseudo-Labeling</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Xiu ; Han, Xinxin ; Xia, Huan ; Li, Kang ; Zhao, Haochen ; Jia, Jia ; Zhen, Gang ; Su, Linzhi ; Zhao, Fengjun ; Cao, Xin</creator><creatorcontrib>Liu, Xiu ; Han, Xinxin ; Xia, Huan ; Li, Kang ; Zhao, Haochen ; Jia, Jia ; Zhen, Gang ; Su, Linzhi ; Zhao, Fengjun ; Cao, Xin</creatorcontrib><description>Point cloud classification is a fundamental problem in 3-D point cloud analysis. However, most existing methods are supervised, which requires costly and laborious annotations of large-scale point cloud datasets. This severely limits the practical applicability of point clouds. Therefore, exploring point cloud clustering methods, which can group point clouds into semantically meaningful clusters in an unsupervised manner, is of great importance. However, this remains a formidable challenge for humans. Here, we present PointCluster, a novel framework for deep clustering of 3-D point clouds. To enable accurate and reliable self-supervision for the clustering process, the framework introduces two semantic pseudo-labeling algorithms: prototype pseudo-labeling and reliable pseudo-labeling. We devise a three-step training process for the clustering network. First, we adopt a cross-modal representation learning approach to optimize the feature model. Second, we freeze the network parameters of the feature model and apply the prototype pseudo-labeling algorithm to optimize the clustering heads separately. Third, we use the reliable pseudo-labeling algorithm to jointly train the feature model and the clustering head in a semi-supervised manner, which enhances the overall clustering performance. The experimental results demonstrate that PointCluster achieves the state-of-the-art clustering results on public datasets such as ShapeNet. Moreover, our method narrows the gap between unsupervised point cloud clustering and supervised point cloud classification, offering a new perspective for the point cloud classification task.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3393911</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Annotations ; Classification ; Clustering ; Clustering algorithms ; Cost analysis ; Datasets ; Labeling ; Machine learning ; Point cloud clustering ; Point cloud compression ; Prototypes ; Reliability ; Representation learning ; self-supervised learning ; Semantics ; Task analysis ; Three dimensional models ; Three-dimensional displays ; Training ; unsupervised point cloud classification</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-8acce4d560baa59277d49ad0d6335dc9855b3049f07670949aab6b34351706683</cites><orcidid>0000-0003-3560-6523 ; 0009-0008-3141-0981 ; 0000-0001-8658-8412 ; 0000-0001-6218-5715 ; 0000-0003-0090-8863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10508401$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10508401$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Xiu</creatorcontrib><creatorcontrib>Han, Xinxin</creatorcontrib><creatorcontrib>Xia, Huan</creatorcontrib><creatorcontrib>Li, Kang</creatorcontrib><creatorcontrib>Zhao, Haochen</creatorcontrib><creatorcontrib>Jia, Jia</creatorcontrib><creatorcontrib>Zhen, Gang</creatorcontrib><creatorcontrib>Su, Linzhi</creatorcontrib><creatorcontrib>Zhao, Fengjun</creatorcontrib><creatorcontrib>Cao, Xin</creatorcontrib><title>PointCluster: Deep Clustering of 3-D Point Clouds With Semantic Pseudo-Labeling</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Point cloud classification is a fundamental problem in 3-D point cloud analysis. However, most existing methods are supervised, which requires costly and laborious annotations of large-scale point cloud datasets. This severely limits the practical applicability of point clouds. Therefore, exploring point cloud clustering methods, which can group point clouds into semantically meaningful clusters in an unsupervised manner, is of great importance. However, this remains a formidable challenge for humans. Here, we present PointCluster, a novel framework for deep clustering of 3-D point clouds. To enable accurate and reliable self-supervision for the clustering process, the framework introduces two semantic pseudo-labeling algorithms: prototype pseudo-labeling and reliable pseudo-labeling. We devise a three-step training process for the clustering network. First, we adopt a cross-modal representation learning approach to optimize the feature model. Second, we freeze the network parameters of the feature model and apply the prototype pseudo-labeling algorithm to optimize the clustering heads separately. Third, we use the reliable pseudo-labeling algorithm to jointly train the feature model and the clustering head in a semi-supervised manner, which enhances the overall clustering performance. The experimental results demonstrate that PointCluster achieves the state-of-the-art clustering results on public datasets such as ShapeNet. Moreover, our method narrows the gap between unsupervised point cloud clustering and supervised point cloud classification, offering a new perspective for the point cloud classification task.</description><subject>Algorithms</subject><subject>Annotations</subject><subject>Classification</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Cost analysis</subject><subject>Datasets</subject><subject>Labeling</subject><subject>Machine learning</subject><subject>Point cloud clustering</subject><subject>Point cloud compression</subject><subject>Prototypes</subject><subject>Reliability</subject><subject>Representation learning</subject><subject>self-supervised learning</subject><subject>Semantics</subject><subject>Task analysis</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Training</subject><subject>unsupervised point cloud classification</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LAzEQxYMoWKsfQPAQ8Jw62fzZxJu0tQqFFlvxGLKbrG5pN3Wze_Dbm9oePA0z896b4YfQLYURpaAf1rO31SiDjI8Y00xTeoYGVAhFQHJ-jgZAtSSZ0tkluopxA0C5oPkALZahbrrxto-dbx_xxPs9PnV184lDhRmZ4D9RmofeRfxRd1945Xe26eoSL6PvXSBzW_htclyji8puo7851SF6f56uxy9kvpi9jp_mpMy47IiyZem5ExIKa4XO8txxbR04yZhwpVZCFAy4riCXOei0s4UsGGfpaZBSsSG6P-bu2_Dd-9iZTejbJp00DAQwYApoUtGjqmxDjK2vzL6td7b9MRTMgZs5cDMHbubELXnujp7ae_9PL0DxFPkLpb5nZg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Liu, Xiu</creator><creator>Han, Xinxin</creator><creator>Xia, Huan</creator><creator>Li, Kang</creator><creator>Zhao, Haochen</creator><creator>Jia, Jia</creator><creator>Zhen, Gang</creator><creator>Su, Linzhi</creator><creator>Zhao, Fengjun</creator><creator>Cao, Xin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3560-6523</orcidid><orcidid>https://orcid.org/0009-0008-3141-0981</orcidid><orcidid>https://orcid.org/0000-0001-8658-8412</orcidid><orcidid>https://orcid.org/0000-0001-6218-5715</orcidid><orcidid>https://orcid.org/0000-0003-0090-8863</orcidid></search><sort><creationdate>2024</creationdate><title>PointCluster: Deep Clustering of 3-D Point Clouds With Semantic Pseudo-Labeling</title><author>Liu, Xiu ; Han, Xinxin ; Xia, Huan ; Li, Kang ; Zhao, Haochen ; Jia, Jia ; Zhen, Gang ; Su, Linzhi ; Zhao, Fengjun ; Cao, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-8acce4d560baa59277d49ad0d6335dc9855b3049f07670949aab6b34351706683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Annotations</topic><topic>Classification</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Cost analysis</topic><topic>Datasets</topic><topic>Labeling</topic><topic>Machine learning</topic><topic>Point cloud clustering</topic><topic>Point cloud compression</topic><topic>Prototypes</topic><topic>Reliability</topic><topic>Representation learning</topic><topic>self-supervised learning</topic><topic>Semantics</topic><topic>Task analysis</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Training</topic><topic>unsupervised point cloud classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiu</creatorcontrib><creatorcontrib>Han, Xinxin</creatorcontrib><creatorcontrib>Xia, Huan</creatorcontrib><creatorcontrib>Li, Kang</creatorcontrib><creatorcontrib>Zhao, Haochen</creatorcontrib><creatorcontrib>Jia, Jia</creatorcontrib><creatorcontrib>Zhen, Gang</creatorcontrib><creatorcontrib>Su, Linzhi</creatorcontrib><creatorcontrib>Zhao, Fengjun</creatorcontrib><creatorcontrib>Cao, Xin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Xiu</au><au>Han, Xinxin</au><au>Xia, Huan</au><au>Li, Kang</au><au>Zhao, Haochen</au><au>Jia, Jia</au><au>Zhen, Gang</au><au>Su, Linzhi</au><au>Zhao, Fengjun</au><au>Cao, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PointCluster: Deep Clustering of 3-D Point Clouds With Semantic Pseudo-Labeling</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Point cloud classification is a fundamental problem in 3-D point cloud analysis. However, most existing methods are supervised, which requires costly and laborious annotations of large-scale point cloud datasets. This severely limits the practical applicability of point clouds. Therefore, exploring point cloud clustering methods, which can group point clouds into semantically meaningful clusters in an unsupervised manner, is of great importance. However, this remains a formidable challenge for humans. Here, we present PointCluster, a novel framework for deep clustering of 3-D point clouds. To enable accurate and reliable self-supervision for the clustering process, the framework introduces two semantic pseudo-labeling algorithms: prototype pseudo-labeling and reliable pseudo-labeling. We devise a three-step training process for the clustering network. First, we adopt a cross-modal representation learning approach to optimize the feature model. Second, we freeze the network parameters of the feature model and apply the prototype pseudo-labeling algorithm to optimize the clustering heads separately. Third, we use the reliable pseudo-labeling algorithm to jointly train the feature model and the clustering head in a semi-supervised manner, which enhances the overall clustering performance. The experimental results demonstrate that PointCluster achieves the state-of-the-art clustering results on public datasets such as ShapeNet. Moreover, our method narrows the gap between unsupervised point cloud clustering and supervised point cloud classification, offering a new perspective for the point cloud classification task.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3393911</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3560-6523</orcidid><orcidid>https://orcid.org/0009-0008-3141-0981</orcidid><orcidid>https://orcid.org/0000-0001-8658-8412</orcidid><orcidid>https://orcid.org/0000-0001-6218-5715</orcidid><orcidid>https://orcid.org/0000-0003-0090-8863</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10508401
source IEEE Electronic Library (IEL)
subjects Algorithms
Annotations
Classification
Clustering
Clustering algorithms
Cost analysis
Datasets
Labeling
Machine learning
Point cloud clustering
Point cloud compression
Prototypes
Reliability
Representation learning
self-supervised learning
Semantics
Task analysis
Three dimensional models
Three-dimensional displays
Training
unsupervised point cloud classification
title PointCluster: Deep Clustering of 3-D Point Clouds With Semantic Pseudo-Labeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A41%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PointCluster:%20Deep%20Clustering%20of%203-D%20Point%20Clouds%20With%20Semantic%20Pseudo-Labeling&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Liu,%20Xiu&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3393911&rft_dat=%3Cproquest_RIE%3E3050303801%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050303801&rft_id=info:pmid/&rft_ieee_id=10508401&rfr_iscdi=true