PointCluster: Deep Clustering of 3-D Point Clouds With Semantic Pseudo-Labeling
Point cloud classification is a fundamental problem in 3-D point cloud analysis. However, most existing methods are supervised, which requires costly and laborious annotations of large-scale point cloud datasets. This severely limits the practical applicability of point clouds. Therefore, exploring...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-14 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Liu, Xiu Han, Xinxin Xia, Huan Li, Kang Zhao, Haochen Jia, Jia Zhen, Gang Su, Linzhi Zhao, Fengjun Cao, Xin |
description | Point cloud classification is a fundamental problem in 3-D point cloud analysis. However, most existing methods are supervised, which requires costly and laborious annotations of large-scale point cloud datasets. This severely limits the practical applicability of point clouds. Therefore, exploring point cloud clustering methods, which can group point clouds into semantically meaningful clusters in an unsupervised manner, is of great importance. However, this remains a formidable challenge for humans. Here, we present PointCluster, a novel framework for deep clustering of 3-D point clouds. To enable accurate and reliable self-supervision for the clustering process, the framework introduces two semantic pseudo-labeling algorithms: prototype pseudo-labeling and reliable pseudo-labeling. We devise a three-step training process for the clustering network. First, we adopt a cross-modal representation learning approach to optimize the feature model. Second, we freeze the network parameters of the feature model and apply the prototype pseudo-labeling algorithm to optimize the clustering heads separately. Third, we use the reliable pseudo-labeling algorithm to jointly train the feature model and the clustering head in a semi-supervised manner, which enhances the overall clustering performance. The experimental results demonstrate that PointCluster achieves the state-of-the-art clustering results on public datasets such as ShapeNet. Moreover, our method narrows the gap between unsupervised point cloud clustering and supervised point cloud classification, offering a new perspective for the point cloud classification task. |
doi_str_mv | 10.1109/TGRS.2024.3393911 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10508401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10508401</ieee_id><sourcerecordid>3050303801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-8acce4d560baa59277d49ad0d6335dc9855b3049f07670949aab6b34351706683</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWKsfQPAQ8Jw62fzZxJu0tQqFFlvxGLKbrG5pN3Wze_Dbm9oePA0z896b4YfQLYURpaAf1rO31SiDjI8Y00xTeoYGVAhFQHJ-jgZAtSSZ0tkluopxA0C5oPkALZahbrrxto-dbx_xxPs9PnV184lDhRmZ4D9RmofeRfxRd1945Xe26eoSL6PvXSBzW_htclyji8puo7851SF6f56uxy9kvpi9jp_mpMy47IiyZem5ExIKa4XO8txxbR04yZhwpVZCFAy4riCXOei0s4UsGGfpaZBSsSG6P-bu2_Dd-9iZTejbJp00DAQwYApoUtGjqmxDjK2vzL6td7b9MRTMgZs5cDMHbubELXnujp7ae_9PL0DxFPkLpb5nZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050303801</pqid></control><display><type>article</type><title>PointCluster: Deep Clustering of 3-D Point Clouds With Semantic Pseudo-Labeling</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Xiu ; Han, Xinxin ; Xia, Huan ; Li, Kang ; Zhao, Haochen ; Jia, Jia ; Zhen, Gang ; Su, Linzhi ; Zhao, Fengjun ; Cao, Xin</creator><creatorcontrib>Liu, Xiu ; Han, Xinxin ; Xia, Huan ; Li, Kang ; Zhao, Haochen ; Jia, Jia ; Zhen, Gang ; Su, Linzhi ; Zhao, Fengjun ; Cao, Xin</creatorcontrib><description>Point cloud classification is a fundamental problem in 3-D point cloud analysis. However, most existing methods are supervised, which requires costly and laborious annotations of large-scale point cloud datasets. This severely limits the practical applicability of point clouds. Therefore, exploring point cloud clustering methods, which can group point clouds into semantically meaningful clusters in an unsupervised manner, is of great importance. However, this remains a formidable challenge for humans. Here, we present PointCluster, a novel framework for deep clustering of 3-D point clouds. To enable accurate and reliable self-supervision for the clustering process, the framework introduces two semantic pseudo-labeling algorithms: prototype pseudo-labeling and reliable pseudo-labeling. We devise a three-step training process for the clustering network. First, we adopt a cross-modal representation learning approach to optimize the feature model. Second, we freeze the network parameters of the feature model and apply the prototype pseudo-labeling algorithm to optimize the clustering heads separately. Third, we use the reliable pseudo-labeling algorithm to jointly train the feature model and the clustering head in a semi-supervised manner, which enhances the overall clustering performance. The experimental results demonstrate that PointCluster achieves the state-of-the-art clustering results on public datasets such as ShapeNet. Moreover, our method narrows the gap between unsupervised point cloud clustering and supervised point cloud classification, offering a new perspective for the point cloud classification task.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3393911</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Annotations ; Classification ; Clustering ; Clustering algorithms ; Cost analysis ; Datasets ; Labeling ; Machine learning ; Point cloud clustering ; Point cloud compression ; Prototypes ; Reliability ; Representation learning ; self-supervised learning ; Semantics ; Task analysis ; Three dimensional models ; Three-dimensional displays ; Training ; unsupervised point cloud classification</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-8acce4d560baa59277d49ad0d6335dc9855b3049f07670949aab6b34351706683</cites><orcidid>0000-0003-3560-6523 ; 0009-0008-3141-0981 ; 0000-0001-8658-8412 ; 0000-0001-6218-5715 ; 0000-0003-0090-8863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10508401$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10508401$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Xiu</creatorcontrib><creatorcontrib>Han, Xinxin</creatorcontrib><creatorcontrib>Xia, Huan</creatorcontrib><creatorcontrib>Li, Kang</creatorcontrib><creatorcontrib>Zhao, Haochen</creatorcontrib><creatorcontrib>Jia, Jia</creatorcontrib><creatorcontrib>Zhen, Gang</creatorcontrib><creatorcontrib>Su, Linzhi</creatorcontrib><creatorcontrib>Zhao, Fengjun</creatorcontrib><creatorcontrib>Cao, Xin</creatorcontrib><title>PointCluster: Deep Clustering of 3-D Point Clouds With Semantic Pseudo-Labeling</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Point cloud classification is a fundamental problem in 3-D point cloud analysis. However, most existing methods are supervised, which requires costly and laborious annotations of large-scale point cloud datasets. This severely limits the practical applicability of point clouds. Therefore, exploring point cloud clustering methods, which can group point clouds into semantically meaningful clusters in an unsupervised manner, is of great importance. However, this remains a formidable challenge for humans. Here, we present PointCluster, a novel framework for deep clustering of 3-D point clouds. To enable accurate and reliable self-supervision for the clustering process, the framework introduces two semantic pseudo-labeling algorithms: prototype pseudo-labeling and reliable pseudo-labeling. We devise a three-step training process for the clustering network. First, we adopt a cross-modal representation learning approach to optimize the feature model. Second, we freeze the network parameters of the feature model and apply the prototype pseudo-labeling algorithm to optimize the clustering heads separately. Third, we use the reliable pseudo-labeling algorithm to jointly train the feature model and the clustering head in a semi-supervised manner, which enhances the overall clustering performance. The experimental results demonstrate that PointCluster achieves the state-of-the-art clustering results on public datasets such as ShapeNet. Moreover, our method narrows the gap between unsupervised point cloud clustering and supervised point cloud classification, offering a new perspective for the point cloud classification task.</description><subject>Algorithms</subject><subject>Annotations</subject><subject>Classification</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Cost analysis</subject><subject>Datasets</subject><subject>Labeling</subject><subject>Machine learning</subject><subject>Point cloud clustering</subject><subject>Point cloud compression</subject><subject>Prototypes</subject><subject>Reliability</subject><subject>Representation learning</subject><subject>self-supervised learning</subject><subject>Semantics</subject><subject>Task analysis</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Training</subject><subject>unsupervised point cloud classification</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LAzEQxYMoWKsfQPAQ8Jw62fzZxJu0tQqFFlvxGLKbrG5pN3Wze_Dbm9oePA0z896b4YfQLYURpaAf1rO31SiDjI8Y00xTeoYGVAhFQHJ-jgZAtSSZ0tkluopxA0C5oPkALZahbrrxto-dbx_xxPs9PnV184lDhRmZ4D9RmofeRfxRd1945Xe26eoSL6PvXSBzW_htclyji8puo7851SF6f56uxy9kvpi9jp_mpMy47IiyZem5ExIKa4XO8txxbR04yZhwpVZCFAy4riCXOei0s4UsGGfpaZBSsSG6P-bu2_Dd-9iZTejbJp00DAQwYApoUtGjqmxDjK2vzL6td7b9MRTMgZs5cDMHbubELXnujp7ae_9PL0DxFPkLpb5nZg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Liu, Xiu</creator><creator>Han, Xinxin</creator><creator>Xia, Huan</creator><creator>Li, Kang</creator><creator>Zhao, Haochen</creator><creator>Jia, Jia</creator><creator>Zhen, Gang</creator><creator>Su, Linzhi</creator><creator>Zhao, Fengjun</creator><creator>Cao, Xin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3560-6523</orcidid><orcidid>https://orcid.org/0009-0008-3141-0981</orcidid><orcidid>https://orcid.org/0000-0001-8658-8412</orcidid><orcidid>https://orcid.org/0000-0001-6218-5715</orcidid><orcidid>https://orcid.org/0000-0003-0090-8863</orcidid></search><sort><creationdate>2024</creationdate><title>PointCluster: Deep Clustering of 3-D Point Clouds With Semantic Pseudo-Labeling</title><author>Liu, Xiu ; Han, Xinxin ; Xia, Huan ; Li, Kang ; Zhao, Haochen ; Jia, Jia ; Zhen, Gang ; Su, Linzhi ; Zhao, Fengjun ; Cao, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-8acce4d560baa59277d49ad0d6335dc9855b3049f07670949aab6b34351706683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Annotations</topic><topic>Classification</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Cost analysis</topic><topic>Datasets</topic><topic>Labeling</topic><topic>Machine learning</topic><topic>Point cloud clustering</topic><topic>Point cloud compression</topic><topic>Prototypes</topic><topic>Reliability</topic><topic>Representation learning</topic><topic>self-supervised learning</topic><topic>Semantics</topic><topic>Task analysis</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Training</topic><topic>unsupervised point cloud classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiu</creatorcontrib><creatorcontrib>Han, Xinxin</creatorcontrib><creatorcontrib>Xia, Huan</creatorcontrib><creatorcontrib>Li, Kang</creatorcontrib><creatorcontrib>Zhao, Haochen</creatorcontrib><creatorcontrib>Jia, Jia</creatorcontrib><creatorcontrib>Zhen, Gang</creatorcontrib><creatorcontrib>Su, Linzhi</creatorcontrib><creatorcontrib>Zhao, Fengjun</creatorcontrib><creatorcontrib>Cao, Xin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Xiu</au><au>Han, Xinxin</au><au>Xia, Huan</au><au>Li, Kang</au><au>Zhao, Haochen</au><au>Jia, Jia</au><au>Zhen, Gang</au><au>Su, Linzhi</au><au>Zhao, Fengjun</au><au>Cao, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PointCluster: Deep Clustering of 3-D Point Clouds With Semantic Pseudo-Labeling</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Point cloud classification is a fundamental problem in 3-D point cloud analysis. However, most existing methods are supervised, which requires costly and laborious annotations of large-scale point cloud datasets. This severely limits the practical applicability of point clouds. Therefore, exploring point cloud clustering methods, which can group point clouds into semantically meaningful clusters in an unsupervised manner, is of great importance. However, this remains a formidable challenge for humans. Here, we present PointCluster, a novel framework for deep clustering of 3-D point clouds. To enable accurate and reliable self-supervision for the clustering process, the framework introduces two semantic pseudo-labeling algorithms: prototype pseudo-labeling and reliable pseudo-labeling. We devise a three-step training process for the clustering network. First, we adopt a cross-modal representation learning approach to optimize the feature model. Second, we freeze the network parameters of the feature model and apply the prototype pseudo-labeling algorithm to optimize the clustering heads separately. Third, we use the reliable pseudo-labeling algorithm to jointly train the feature model and the clustering head in a semi-supervised manner, which enhances the overall clustering performance. The experimental results demonstrate that PointCluster achieves the state-of-the-art clustering results on public datasets such as ShapeNet. Moreover, our method narrows the gap between unsupervised point cloud clustering and supervised point cloud classification, offering a new perspective for the point cloud classification task.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3393911</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3560-6523</orcidid><orcidid>https://orcid.org/0009-0008-3141-0981</orcidid><orcidid>https://orcid.org/0000-0001-8658-8412</orcidid><orcidid>https://orcid.org/0000-0001-6218-5715</orcidid><orcidid>https://orcid.org/0000-0003-0090-8863</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_10508401 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Annotations Classification Clustering Clustering algorithms Cost analysis Datasets Labeling Machine learning Point cloud clustering Point cloud compression Prototypes Reliability Representation learning self-supervised learning Semantics Task analysis Three dimensional models Three-dimensional displays Training unsupervised point cloud classification |
title | PointCluster: Deep Clustering of 3-D Point Clouds With Semantic Pseudo-Labeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A41%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PointCluster:%20Deep%20Clustering%20of%203-D%20Point%20Clouds%20With%20Semantic%20Pseudo-Labeling&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Liu,%20Xiu&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3393911&rft_dat=%3Cproquest_RIE%3E3050303801%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050303801&rft_id=info:pmid/&rft_ieee_id=10508401&rfr_iscdi=true |