Learning Contrast-Enhanced Shape-Biased Representations for Infrared Small Target Detection

Detecting infrared small targets under cluttered background is mainly challenged by dim textures, low contrast and varying shapes. This paper proposes an approach to facilitate infrared small target detection by learning contrast-enhanced shape-biased representations. The approach cascades a contras...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2024, Vol.33, p.3047-3058
Hauptverfasser: Lin, Fanzhao, Bao, Kexin, Li, Yong, Zeng, Dan, Ge, Shiming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3058
container_issue
container_start_page 3047
container_title IEEE transactions on image processing
container_volume 33
creator Lin, Fanzhao
Bao, Kexin
Li, Yong
Zeng, Dan
Ge, Shiming
description Detecting infrared small targets under cluttered background is mainly challenged by dim textures, low contrast and varying shapes. This paper proposes an approach to facilitate infrared small target detection by learning contrast-enhanced shape-biased representations. The approach cascades a contrast-shape encoder and a shape-reconstructable decoder to learn discriminative representations that can effectively identify target objects. The contrast-shape encoder applies a stem of central difference convolutions and a few large-kernel convolutions to extract shape-preserving features from input infrared images. This specific design in convolutions can effectively overcome the challenges of low contrast and varying shapes in a unified way. Meanwhile, the shape-reconstructable decoder accepts the edge map of input infrared image and is learned by simultaneously optimizing two shape-related consistencies: the internal one decodes the encoder representations by upsampling reconstruction and constraints segmentation consistency, whilst the external one cascades three gated ResNet blocks to hierarchically fuse edge maps and decoder representations and constrains contour consistency. This decoding way can bypass the challenge of dim texture and varying shapes. In our approach, the encoder and decoder are learned in an end-to-end manner, and the resulting shape-biased encoder representations are suitable for identifying infrared small targets. Extensive experimental evaluations are conducted on public benchmarks and the results demonstrate the effectiveness of our approach.
doi_str_mv 10.1109/TIP.2024.3391011
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10508299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10508299</ieee_id><sourcerecordid>3046511645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-34e3d83460861f8f4a32fc06ef33c9c2fa0e292abec91431b3a83a1fb19ab0233</originalsourceid><addsrcrecordid>eNpdkE1v00AQhlcIRD_gzgEhS1y4OJ3ZWX_sEUJLI0WignDiYI03s60rZx12nQP_HlsJqOI0M9Lzvho9Sr1BWCCCvdqs7hYatFkQWQTEZ-ocrcEcwOjn0w5FlVdo7Jm6SOkRAE2B5Ut1RnVZlDXV5-rnWjiGLtxnyyGMkdOYX4cHDk622fcH3kv-qeM0Hd9kHyVJGHnshpAyP8RsFXzkOJM77vtsw_FexuyzjOJm6JV64blP8vo0L9WPm-vN8jZff_2yWn5c544Ax5yM0LYmU0Jdoq-9YdLeQSmeyFmnPYNoq7kVZ9EQtsQ1MfoWLbegiS7Vh2PvPg6_DpLGZtclJ33PQYZDaghMWSCWppjQ9_-hj8Mhhum7mbLGVhVVEwVHysUhpSi-2cdux_F3g9DM4ptJfDOLb07ip8i7U_Gh3cn2X-Cv6Ql4ewQ6EXnSV0CtraU_wNKGaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049497737</pqid></control><display><type>article</type><title>Learning Contrast-Enhanced Shape-Biased Representations for Infrared Small Target Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, Fanzhao ; Bao, Kexin ; Li, Yong ; Zeng, Dan ; Ge, Shiming</creator><creatorcontrib>Lin, Fanzhao ; Bao, Kexin ; Li, Yong ; Zeng, Dan ; Ge, Shiming</creatorcontrib><description>Detecting infrared small targets under cluttered background is mainly challenged by dim textures, low contrast and varying shapes. This paper proposes an approach to facilitate infrared small target detection by learning contrast-enhanced shape-biased representations. The approach cascades a contrast-shape encoder and a shape-reconstructable decoder to learn discriminative representations that can effectively identify target objects. The contrast-shape encoder applies a stem of central difference convolutions and a few large-kernel convolutions to extract shape-preserving features from input infrared images. This specific design in convolutions can effectively overcome the challenges of low contrast and varying shapes in a unified way. Meanwhile, the shape-reconstructable decoder accepts the edge map of input infrared image and is learned by simultaneously optimizing two shape-related consistencies: the internal one decodes the encoder representations by upsampling reconstruction and constraints segmentation consistency, whilst the external one cascades three gated ResNet blocks to hierarchically fuse edge maps and decoder representations and constrains contour consistency. This decoding way can bypass the challenge of dim texture and varying shapes. In our approach, the encoder and decoder are learned in an end-to-end manner, and the resulting shape-biased encoder representations are suitable for identifying infrared small targets. Extensive experimental evaluations are conducted on public benchmarks and the results demonstrate the effectiveness of our approach.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2024.3391011</identifier><identifier>PMID: 38656838</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Coders ; Consistency ; Convolution ; Convolutional codes ; convolutional neural network ; Decoding ; Feature extraction ; Image edge detection ; Infrared imagery ; Infrared small target detection ; Learning ; Object detection ; object segmentation ; representation learning ; Representations ; Shape ; Target detection ; Target recognition</subject><ispartof>IEEE transactions on image processing, 2024, Vol.33, p.3047-3058</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-34e3d83460861f8f4a32fc06ef33c9c2fa0e292abec91431b3a83a1fb19ab0233</cites><orcidid>0000-0001-5293-310X ; 0000-0003-1300-1769 ; 0000-0003-0339-9400 ; 0000-0003-4921-6112</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10508299$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10508299$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38656838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Fanzhao</creatorcontrib><creatorcontrib>Bao, Kexin</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Zeng, Dan</creatorcontrib><creatorcontrib>Ge, Shiming</creatorcontrib><title>Learning Contrast-Enhanced Shape-Biased Representations for Infrared Small Target Detection</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Detecting infrared small targets under cluttered background is mainly challenged by dim textures, low contrast and varying shapes. This paper proposes an approach to facilitate infrared small target detection by learning contrast-enhanced shape-biased representations. The approach cascades a contrast-shape encoder and a shape-reconstructable decoder to learn discriminative representations that can effectively identify target objects. The contrast-shape encoder applies a stem of central difference convolutions and a few large-kernel convolutions to extract shape-preserving features from input infrared images. This specific design in convolutions can effectively overcome the challenges of low contrast and varying shapes in a unified way. Meanwhile, the shape-reconstructable decoder accepts the edge map of input infrared image and is learned by simultaneously optimizing two shape-related consistencies: the internal one decodes the encoder representations by upsampling reconstruction and constraints segmentation consistency, whilst the external one cascades three gated ResNet blocks to hierarchically fuse edge maps and decoder representations and constrains contour consistency. This decoding way can bypass the challenge of dim texture and varying shapes. In our approach, the encoder and decoder are learned in an end-to-end manner, and the resulting shape-biased encoder representations are suitable for identifying infrared small targets. Extensive experimental evaluations are conducted on public benchmarks and the results demonstrate the effectiveness of our approach.</description><subject>Coders</subject><subject>Consistency</subject><subject>Convolution</subject><subject>Convolutional codes</subject><subject>convolutional neural network</subject><subject>Decoding</subject><subject>Feature extraction</subject><subject>Image edge detection</subject><subject>Infrared imagery</subject><subject>Infrared small target detection</subject><subject>Learning</subject><subject>Object detection</subject><subject>object segmentation</subject><subject>representation learning</subject><subject>Representations</subject><subject>Shape</subject><subject>Target detection</subject><subject>Target recognition</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1v00AQhlcIRD_gzgEhS1y4OJ3ZWX_sEUJLI0WignDiYI03s60rZx12nQP_HlsJqOI0M9Lzvho9Sr1BWCCCvdqs7hYatFkQWQTEZ-ocrcEcwOjn0w5FlVdo7Jm6SOkRAE2B5Ut1RnVZlDXV5-rnWjiGLtxnyyGMkdOYX4cHDk622fcH3kv-qeM0Hd9kHyVJGHnshpAyP8RsFXzkOJM77vtsw_FexuyzjOJm6JV64blP8vo0L9WPm-vN8jZff_2yWn5c544Ax5yM0LYmU0Jdoq-9YdLeQSmeyFmnPYNoq7kVZ9EQtsQ1MfoWLbegiS7Vh2PvPg6_DpLGZtclJ33PQYZDaghMWSCWppjQ9_-hj8Mhhum7mbLGVhVVEwVHysUhpSi-2cdux_F3g9DM4ptJfDOLb07ip8i7U_Gh3cn2X-Cv6Ql4ewQ6EXnSV0CtraU_wNKGaQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lin, Fanzhao</creator><creator>Bao, Kexin</creator><creator>Li, Yong</creator><creator>Zeng, Dan</creator><creator>Ge, Shiming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5293-310X</orcidid><orcidid>https://orcid.org/0000-0003-1300-1769</orcidid><orcidid>https://orcid.org/0000-0003-0339-9400</orcidid><orcidid>https://orcid.org/0000-0003-4921-6112</orcidid></search><sort><creationdate>2024</creationdate><title>Learning Contrast-Enhanced Shape-Biased Representations for Infrared Small Target Detection</title><author>Lin, Fanzhao ; Bao, Kexin ; Li, Yong ; Zeng, Dan ; Ge, Shiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-34e3d83460861f8f4a32fc06ef33c9c2fa0e292abec91431b3a83a1fb19ab0233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coders</topic><topic>Consistency</topic><topic>Convolution</topic><topic>Convolutional codes</topic><topic>convolutional neural network</topic><topic>Decoding</topic><topic>Feature extraction</topic><topic>Image edge detection</topic><topic>Infrared imagery</topic><topic>Infrared small target detection</topic><topic>Learning</topic><topic>Object detection</topic><topic>object segmentation</topic><topic>representation learning</topic><topic>Representations</topic><topic>Shape</topic><topic>Target detection</topic><topic>Target recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Fanzhao</creatorcontrib><creatorcontrib>Bao, Kexin</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Zeng, Dan</creatorcontrib><creatorcontrib>Ge, Shiming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Fanzhao</au><au>Bao, Kexin</au><au>Li, Yong</au><au>Zeng, Dan</au><au>Ge, Shiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Contrast-Enhanced Shape-Biased Representations for Infrared Small Target Detection</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2024</date><risdate>2024</risdate><volume>33</volume><spage>3047</spage><epage>3058</epage><pages>3047-3058</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Detecting infrared small targets under cluttered background is mainly challenged by dim textures, low contrast and varying shapes. This paper proposes an approach to facilitate infrared small target detection by learning contrast-enhanced shape-biased representations. The approach cascades a contrast-shape encoder and a shape-reconstructable decoder to learn discriminative representations that can effectively identify target objects. The contrast-shape encoder applies a stem of central difference convolutions and a few large-kernel convolutions to extract shape-preserving features from input infrared images. This specific design in convolutions can effectively overcome the challenges of low contrast and varying shapes in a unified way. Meanwhile, the shape-reconstructable decoder accepts the edge map of input infrared image and is learned by simultaneously optimizing two shape-related consistencies: the internal one decodes the encoder representations by upsampling reconstruction and constraints segmentation consistency, whilst the external one cascades three gated ResNet blocks to hierarchically fuse edge maps and decoder representations and constrains contour consistency. This decoding way can bypass the challenge of dim texture and varying shapes. In our approach, the encoder and decoder are learned in an end-to-end manner, and the resulting shape-biased encoder representations are suitable for identifying infrared small targets. Extensive experimental evaluations are conducted on public benchmarks and the results demonstrate the effectiveness of our approach.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38656838</pmid><doi>10.1109/TIP.2024.3391011</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5293-310X</orcidid><orcidid>https://orcid.org/0000-0003-1300-1769</orcidid><orcidid>https://orcid.org/0000-0003-0339-9400</orcidid><orcidid>https://orcid.org/0000-0003-4921-6112</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2024, Vol.33, p.3047-3058
issn 1057-7149
1941-0042
language eng
recordid cdi_ieee_primary_10508299
source IEEE Electronic Library (IEL)
subjects Coders
Consistency
Convolution
Convolutional codes
convolutional neural network
Decoding
Feature extraction
Image edge detection
Infrared imagery
Infrared small target detection
Learning
Object detection
object segmentation
representation learning
Representations
Shape
Target detection
Target recognition
title Learning Contrast-Enhanced Shape-Biased Representations for Infrared Small Target Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A59%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Contrast-Enhanced%20Shape-Biased%20Representations%20for%20Infrared%20Small%20Target%20Detection&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Lin,%20Fanzhao&rft.date=2024&rft.volume=33&rft.spage=3047&rft.epage=3058&rft.pages=3047-3058&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2024.3391011&rft_dat=%3Cproquest_RIE%3E3046511645%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049497737&rft_id=info:pmid/38656838&rft_ieee_id=10508299&rfr_iscdi=true