Learning Contrast-Enhanced Shape-Biased Representations for Infrared Small Target Detection
Detecting infrared small targets under cluttered background is mainly challenged by dim textures, low contrast and varying shapes. This paper proposes an approach to facilitate infrared small target detection by learning contrast-enhanced shape-biased representations. The approach cascades a contras...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2024, Vol.33, p.3047-3058 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3058 |
---|---|
container_issue | |
container_start_page | 3047 |
container_title | IEEE transactions on image processing |
container_volume | 33 |
creator | Lin, Fanzhao Bao, Kexin Li, Yong Zeng, Dan Ge, Shiming |
description | Detecting infrared small targets under cluttered background is mainly challenged by dim textures, low contrast and varying shapes. This paper proposes an approach to facilitate infrared small target detection by learning contrast-enhanced shape-biased representations. The approach cascades a contrast-shape encoder and a shape-reconstructable decoder to learn discriminative representations that can effectively identify target objects. The contrast-shape encoder applies a stem of central difference convolutions and a few large-kernel convolutions to extract shape-preserving features from input infrared images. This specific design in convolutions can effectively overcome the challenges of low contrast and varying shapes in a unified way. Meanwhile, the shape-reconstructable decoder accepts the edge map of input infrared image and is learned by simultaneously optimizing two shape-related consistencies: the internal one decodes the encoder representations by upsampling reconstruction and constraints segmentation consistency, whilst the external one cascades three gated ResNet blocks to hierarchically fuse edge maps and decoder representations and constrains contour consistency. This decoding way can bypass the challenge of dim texture and varying shapes. In our approach, the encoder and decoder are learned in an end-to-end manner, and the resulting shape-biased encoder representations are suitable for identifying infrared small targets. Extensive experimental evaluations are conducted on public benchmarks and the results demonstrate the effectiveness of our approach. |
doi_str_mv | 10.1109/TIP.2024.3391011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10508299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10508299</ieee_id><sourcerecordid>3046511645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-34e3d83460861f8f4a32fc06ef33c9c2fa0e292abec91431b3a83a1fb19ab0233</originalsourceid><addsrcrecordid>eNpdkE1v00AQhlcIRD_gzgEhS1y4OJ3ZWX_sEUJLI0WignDiYI03s60rZx12nQP_HlsJqOI0M9Lzvho9Sr1BWCCCvdqs7hYatFkQWQTEZ-ocrcEcwOjn0w5FlVdo7Jm6SOkRAE2B5Ut1RnVZlDXV5-rnWjiGLtxnyyGMkdOYX4cHDk622fcH3kv-qeM0Hd9kHyVJGHnshpAyP8RsFXzkOJM77vtsw_FexuyzjOJm6JV64blP8vo0L9WPm-vN8jZff_2yWn5c544Ax5yM0LYmU0Jdoq-9YdLeQSmeyFmnPYNoq7kVZ9EQtsQ1MfoWLbegiS7Vh2PvPg6_DpLGZtclJ33PQYZDaghMWSCWppjQ9_-hj8Mhhum7mbLGVhVVEwVHysUhpSi-2cdux_F3g9DM4ptJfDOLb07ip8i7U_Gh3cn2X-Cv6Ql4ewQ6EXnSV0CtraU_wNKGaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049497737</pqid></control><display><type>article</type><title>Learning Contrast-Enhanced Shape-Biased Representations for Infrared Small Target Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, Fanzhao ; Bao, Kexin ; Li, Yong ; Zeng, Dan ; Ge, Shiming</creator><creatorcontrib>Lin, Fanzhao ; Bao, Kexin ; Li, Yong ; Zeng, Dan ; Ge, Shiming</creatorcontrib><description>Detecting infrared small targets under cluttered background is mainly challenged by dim textures, low contrast and varying shapes. This paper proposes an approach to facilitate infrared small target detection by learning contrast-enhanced shape-biased representations. The approach cascades a contrast-shape encoder and a shape-reconstructable decoder to learn discriminative representations that can effectively identify target objects. The contrast-shape encoder applies a stem of central difference convolutions and a few large-kernel convolutions to extract shape-preserving features from input infrared images. This specific design in convolutions can effectively overcome the challenges of low contrast and varying shapes in a unified way. Meanwhile, the shape-reconstructable decoder accepts the edge map of input infrared image and is learned by simultaneously optimizing two shape-related consistencies: the internal one decodes the encoder representations by upsampling reconstruction and constraints segmentation consistency, whilst the external one cascades three gated ResNet blocks to hierarchically fuse edge maps and decoder representations and constrains contour consistency. This decoding way can bypass the challenge of dim texture and varying shapes. In our approach, the encoder and decoder are learned in an end-to-end manner, and the resulting shape-biased encoder representations are suitable for identifying infrared small targets. Extensive experimental evaluations are conducted on public benchmarks and the results demonstrate the effectiveness of our approach.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2024.3391011</identifier><identifier>PMID: 38656838</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Coders ; Consistency ; Convolution ; Convolutional codes ; convolutional neural network ; Decoding ; Feature extraction ; Image edge detection ; Infrared imagery ; Infrared small target detection ; Learning ; Object detection ; object segmentation ; representation learning ; Representations ; Shape ; Target detection ; Target recognition</subject><ispartof>IEEE transactions on image processing, 2024, Vol.33, p.3047-3058</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-34e3d83460861f8f4a32fc06ef33c9c2fa0e292abec91431b3a83a1fb19ab0233</cites><orcidid>0000-0001-5293-310X ; 0000-0003-1300-1769 ; 0000-0003-0339-9400 ; 0000-0003-4921-6112</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10508299$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10508299$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38656838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Fanzhao</creatorcontrib><creatorcontrib>Bao, Kexin</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Zeng, Dan</creatorcontrib><creatorcontrib>Ge, Shiming</creatorcontrib><title>Learning Contrast-Enhanced Shape-Biased Representations for Infrared Small Target Detection</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Detecting infrared small targets under cluttered background is mainly challenged by dim textures, low contrast and varying shapes. This paper proposes an approach to facilitate infrared small target detection by learning contrast-enhanced shape-biased representations. The approach cascades a contrast-shape encoder and a shape-reconstructable decoder to learn discriminative representations that can effectively identify target objects. The contrast-shape encoder applies a stem of central difference convolutions and a few large-kernel convolutions to extract shape-preserving features from input infrared images. This specific design in convolutions can effectively overcome the challenges of low contrast and varying shapes in a unified way. Meanwhile, the shape-reconstructable decoder accepts the edge map of input infrared image and is learned by simultaneously optimizing two shape-related consistencies: the internal one decodes the encoder representations by upsampling reconstruction and constraints segmentation consistency, whilst the external one cascades three gated ResNet blocks to hierarchically fuse edge maps and decoder representations and constrains contour consistency. This decoding way can bypass the challenge of dim texture and varying shapes. In our approach, the encoder and decoder are learned in an end-to-end manner, and the resulting shape-biased encoder representations are suitable for identifying infrared small targets. Extensive experimental evaluations are conducted on public benchmarks and the results demonstrate the effectiveness of our approach.</description><subject>Coders</subject><subject>Consistency</subject><subject>Convolution</subject><subject>Convolutional codes</subject><subject>convolutional neural network</subject><subject>Decoding</subject><subject>Feature extraction</subject><subject>Image edge detection</subject><subject>Infrared imagery</subject><subject>Infrared small target detection</subject><subject>Learning</subject><subject>Object detection</subject><subject>object segmentation</subject><subject>representation learning</subject><subject>Representations</subject><subject>Shape</subject><subject>Target detection</subject><subject>Target recognition</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1v00AQhlcIRD_gzgEhS1y4OJ3ZWX_sEUJLI0WignDiYI03s60rZx12nQP_HlsJqOI0M9Lzvho9Sr1BWCCCvdqs7hYatFkQWQTEZ-ocrcEcwOjn0w5FlVdo7Jm6SOkRAE2B5Ut1RnVZlDXV5-rnWjiGLtxnyyGMkdOYX4cHDk622fcH3kv-qeM0Hd9kHyVJGHnshpAyP8RsFXzkOJM77vtsw_FexuyzjOJm6JV64blP8vo0L9WPm-vN8jZff_2yWn5c544Ax5yM0LYmU0Jdoq-9YdLeQSmeyFmnPYNoq7kVZ9EQtsQ1MfoWLbegiS7Vh2PvPg6_DpLGZtclJ33PQYZDaghMWSCWppjQ9_-hj8Mhhum7mbLGVhVVEwVHysUhpSi-2cdux_F3g9DM4ptJfDOLb07ip8i7U_Gh3cn2X-Cv6Ql4ewQ6EXnSV0CtraU_wNKGaQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lin, Fanzhao</creator><creator>Bao, Kexin</creator><creator>Li, Yong</creator><creator>Zeng, Dan</creator><creator>Ge, Shiming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5293-310X</orcidid><orcidid>https://orcid.org/0000-0003-1300-1769</orcidid><orcidid>https://orcid.org/0000-0003-0339-9400</orcidid><orcidid>https://orcid.org/0000-0003-4921-6112</orcidid></search><sort><creationdate>2024</creationdate><title>Learning Contrast-Enhanced Shape-Biased Representations for Infrared Small Target Detection</title><author>Lin, Fanzhao ; Bao, Kexin ; Li, Yong ; Zeng, Dan ; Ge, Shiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-34e3d83460861f8f4a32fc06ef33c9c2fa0e292abec91431b3a83a1fb19ab0233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coders</topic><topic>Consistency</topic><topic>Convolution</topic><topic>Convolutional codes</topic><topic>convolutional neural network</topic><topic>Decoding</topic><topic>Feature extraction</topic><topic>Image edge detection</topic><topic>Infrared imagery</topic><topic>Infrared small target detection</topic><topic>Learning</topic><topic>Object detection</topic><topic>object segmentation</topic><topic>representation learning</topic><topic>Representations</topic><topic>Shape</topic><topic>Target detection</topic><topic>Target recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Fanzhao</creatorcontrib><creatorcontrib>Bao, Kexin</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Zeng, Dan</creatorcontrib><creatorcontrib>Ge, Shiming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Fanzhao</au><au>Bao, Kexin</au><au>Li, Yong</au><au>Zeng, Dan</au><au>Ge, Shiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Contrast-Enhanced Shape-Biased Representations for Infrared Small Target Detection</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2024</date><risdate>2024</risdate><volume>33</volume><spage>3047</spage><epage>3058</epage><pages>3047-3058</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Detecting infrared small targets under cluttered background is mainly challenged by dim textures, low contrast and varying shapes. This paper proposes an approach to facilitate infrared small target detection by learning contrast-enhanced shape-biased representations. The approach cascades a contrast-shape encoder and a shape-reconstructable decoder to learn discriminative representations that can effectively identify target objects. The contrast-shape encoder applies a stem of central difference convolutions and a few large-kernel convolutions to extract shape-preserving features from input infrared images. This specific design in convolutions can effectively overcome the challenges of low contrast and varying shapes in a unified way. Meanwhile, the shape-reconstructable decoder accepts the edge map of input infrared image and is learned by simultaneously optimizing two shape-related consistencies: the internal one decodes the encoder representations by upsampling reconstruction and constraints segmentation consistency, whilst the external one cascades three gated ResNet blocks to hierarchically fuse edge maps and decoder representations and constrains contour consistency. This decoding way can bypass the challenge of dim texture and varying shapes. In our approach, the encoder and decoder are learned in an end-to-end manner, and the resulting shape-biased encoder representations are suitable for identifying infrared small targets. Extensive experimental evaluations are conducted on public benchmarks and the results demonstrate the effectiveness of our approach.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38656838</pmid><doi>10.1109/TIP.2024.3391011</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5293-310X</orcidid><orcidid>https://orcid.org/0000-0003-1300-1769</orcidid><orcidid>https://orcid.org/0000-0003-0339-9400</orcidid><orcidid>https://orcid.org/0000-0003-4921-6112</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2024, Vol.33, p.3047-3058 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_ieee_primary_10508299 |
source | IEEE Electronic Library (IEL) |
subjects | Coders Consistency Convolution Convolutional codes convolutional neural network Decoding Feature extraction Image edge detection Infrared imagery Infrared small target detection Learning Object detection object segmentation representation learning Representations Shape Target detection Target recognition |
title | Learning Contrast-Enhanced Shape-Biased Representations for Infrared Small Target Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A59%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Contrast-Enhanced%20Shape-Biased%20Representations%20for%20Infrared%20Small%20Target%20Detection&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Lin,%20Fanzhao&rft.date=2024&rft.volume=33&rft.spage=3047&rft.epage=3058&rft.pages=3047-3058&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2024.3391011&rft_dat=%3Cproquest_RIE%3E3046511645%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049497737&rft_id=info:pmid/38656838&rft_ieee_id=10508299&rfr_iscdi=true |