ParisLuco3D: A High-Quality Target Dataset for Domain Generalization of LiDAR Perception

LiDAR is an essential sensor for autonomous driving by collecting precise geometric information regarding a scene. As the performance of various LiDAR perception tasks has improved, generalizations to new environments and sensors has emerged to test these optimized models in real-world conditions. U...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2024-06, Vol.9 (6), p.5496-5503
Hauptverfasser: Sanchez, Jules, Soum-Fontez, Louis, Deschaud, Jean-Emmanuel, Goulette, Francois
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5503
container_issue 6
container_start_page 5496
container_title IEEE robotics and automation letters
container_volume 9
creator Sanchez, Jules
Soum-Fontez, Louis
Deschaud, Jean-Emmanuel
Goulette, Francois
description LiDAR is an essential sensor for autonomous driving by collecting precise geometric information regarding a scene. As the performance of various LiDAR perception tasks has improved, generalizations to new environments and sensors has emerged to test these optimized models in real-world conditions. Unfortunately, the various annotation strategies of data providers complicate the computation of cross-domain performances. This paper provides a novel dataset, ParisLuco3D, specifically designed for cross-domain evaluation to make it easier to evaluate the performance utilizing various source datasets. Alongside the dataset, online benchmarks for LiDAR semantic segmentation, LiDAR object detection, and LiDAR tracking are provided to ensure a fair comparison across methods.
doi_str_mv 10.1109/LRA.2024.3393209
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10508037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10508037</ieee_id><sourcerecordid>3050305205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-8e610841690132d70c85eeabff285a6793f22bdbae91d5b2e9474232cab308283</originalsourceid><addsrcrecordid>eNpNkMFLwzAUh4MoOHR3Dx4CnjtfkqZpvJVNN6HgHBO8hbR7nRlbM9P2MP96O7bDDo_f4_G99-Aj5IHBiDHQz_kiG3Hg8UgILTjoKzLgQqlIqCS5vuhvybBpNgDAJFdCywH5ntvgmrwrvZi80IzO3Pon-uzs1rUHurRhjS2d2NY2fVY-0InfWVfTKdYYeujPts7X1Fc0d5NsQecYStwfZ_fkprLbBofnvCNfb6_L8SzKP6bv4yyPSh7LNkoxYZDGLNHABF8pKFOJaIuq4qm0idKi4rxYFRY1W8mCo45VzAUvbSEg5am4I0-nu_vgfztsWrPxXaj7l0aAhL44yJ6CE1UG3zQBK7MPbmfDwTAwR4WmV2iOCs1ZYb_yeFpxiHiBS0hBKPEPuv9qrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050305205</pqid></control><display><type>article</type><title>ParisLuco3D: A High-Quality Target Dataset for Domain Generalization of LiDAR Perception</title><source>IEEE Electronic Library (IEL)</source><creator>Sanchez, Jules ; Soum-Fontez, Louis ; Deschaud, Jean-Emmanuel ; Goulette, Francois</creator><creatorcontrib>Sanchez, Jules ; Soum-Fontez, Louis ; Deschaud, Jean-Emmanuel ; Goulette, Francois</creatorcontrib><description>LiDAR is an essential sensor for autonomous driving by collecting precise geometric information regarding a scene. As the performance of various LiDAR perception tasks has improved, generalizations to new environments and sensors has emerged to test these optimized models in real-world conditions. Unfortunately, the various annotation strategies of data providers complicate the computation of cross-domain performances. This paper provides a novel dataset, ParisLuco3D, specifically designed for cross-domain evaluation to make it easier to evaluate the performance utilizing various source datasets. Alongside the dataset, online benchmarks for LiDAR semantic segmentation, LiDAR object detection, and LiDAR tracking are provided to ensure a fair comparison across methods.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2024.3393209</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Annotations ; Data sets for robotic vision ; Datasets ; intelligent transportation systems ; Laser radar ; Lidar ; Object detection ; Object recognition ; Perception ; Performance evaluation ; Point cloud compression ; Robot sensing systems ; segmentation and categorization ; Semantic segmentation ; Task analysis</subject><ispartof>IEEE robotics and automation letters, 2024-06, Vol.9 (6), p.5496-5503</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-8e610841690132d70c85eeabff285a6793f22bdbae91d5b2e9474232cab308283</cites><orcidid>0009-0003-9789-1558 ; 0000-0002-6696-9354 ; 0000-0003-1527-2650 ; 0000-0002-8104-0930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10508037$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10508037$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sanchez, Jules</creatorcontrib><creatorcontrib>Soum-Fontez, Louis</creatorcontrib><creatorcontrib>Deschaud, Jean-Emmanuel</creatorcontrib><creatorcontrib>Goulette, Francois</creatorcontrib><title>ParisLuco3D: A High-Quality Target Dataset for Domain Generalization of LiDAR Perception</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>LiDAR is an essential sensor for autonomous driving by collecting precise geometric information regarding a scene. As the performance of various LiDAR perception tasks has improved, generalizations to new environments and sensors has emerged to test these optimized models in real-world conditions. Unfortunately, the various annotation strategies of data providers complicate the computation of cross-domain performances. This paper provides a novel dataset, ParisLuco3D, specifically designed for cross-domain evaluation to make it easier to evaluate the performance utilizing various source datasets. Alongside the dataset, online benchmarks for LiDAR semantic segmentation, LiDAR object detection, and LiDAR tracking are provided to ensure a fair comparison across methods.</description><subject>Annotations</subject><subject>Data sets for robotic vision</subject><subject>Datasets</subject><subject>intelligent transportation systems</subject><subject>Laser radar</subject><subject>Lidar</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Perception</subject><subject>Performance evaluation</subject><subject>Point cloud compression</subject><subject>Robot sensing systems</subject><subject>segmentation and categorization</subject><subject>Semantic segmentation</subject><subject>Task analysis</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFLwzAUh4MoOHR3Dx4CnjtfkqZpvJVNN6HgHBO8hbR7nRlbM9P2MP96O7bDDo_f4_G99-Aj5IHBiDHQz_kiG3Hg8UgILTjoKzLgQqlIqCS5vuhvybBpNgDAJFdCywH5ntvgmrwrvZi80IzO3Pon-uzs1rUHurRhjS2d2NY2fVY-0InfWVfTKdYYeujPts7X1Fc0d5NsQecYStwfZ_fkprLbBofnvCNfb6_L8SzKP6bv4yyPSh7LNkoxYZDGLNHABF8pKFOJaIuq4qm0idKi4rxYFRY1W8mCo45VzAUvbSEg5am4I0-nu_vgfztsWrPxXaj7l0aAhL44yJ6CE1UG3zQBK7MPbmfDwTAwR4WmV2iOCs1ZYb_yeFpxiHiBS0hBKPEPuv9qrg</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Sanchez, Jules</creator><creator>Soum-Fontez, Louis</creator><creator>Deschaud, Jean-Emmanuel</creator><creator>Goulette, Francois</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0003-9789-1558</orcidid><orcidid>https://orcid.org/0000-0002-6696-9354</orcidid><orcidid>https://orcid.org/0000-0003-1527-2650</orcidid><orcidid>https://orcid.org/0000-0002-8104-0930</orcidid></search><sort><creationdate>20240601</creationdate><title>ParisLuco3D: A High-Quality Target Dataset for Domain Generalization of LiDAR Perception</title><author>Sanchez, Jules ; Soum-Fontez, Louis ; Deschaud, Jean-Emmanuel ; Goulette, Francois</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-8e610841690132d70c85eeabff285a6793f22bdbae91d5b2e9474232cab308283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Data sets for robotic vision</topic><topic>Datasets</topic><topic>intelligent transportation systems</topic><topic>Laser radar</topic><topic>Lidar</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Perception</topic><topic>Performance evaluation</topic><topic>Point cloud compression</topic><topic>Robot sensing systems</topic><topic>segmentation and categorization</topic><topic>Semantic segmentation</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanchez, Jules</creatorcontrib><creatorcontrib>Soum-Fontez, Louis</creatorcontrib><creatorcontrib>Deschaud, Jean-Emmanuel</creatorcontrib><creatorcontrib>Goulette, Francois</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sanchez, Jules</au><au>Soum-Fontez, Louis</au><au>Deschaud, Jean-Emmanuel</au><au>Goulette, Francois</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ParisLuco3D: A High-Quality Target Dataset for Domain Generalization of LiDAR Perception</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>9</volume><issue>6</issue><spage>5496</spage><epage>5503</epage><pages>5496-5503</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>LiDAR is an essential sensor for autonomous driving by collecting precise geometric information regarding a scene. As the performance of various LiDAR perception tasks has improved, generalizations to new environments and sensors has emerged to test these optimized models in real-world conditions. Unfortunately, the various annotation strategies of data providers complicate the computation of cross-domain performances. This paper provides a novel dataset, ParisLuco3D, specifically designed for cross-domain evaluation to make it easier to evaluate the performance utilizing various source datasets. Alongside the dataset, online benchmarks for LiDAR semantic segmentation, LiDAR object detection, and LiDAR tracking are provided to ensure a fair comparison across methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2024.3393209</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0003-9789-1558</orcidid><orcidid>https://orcid.org/0000-0002-6696-9354</orcidid><orcidid>https://orcid.org/0000-0003-1527-2650</orcidid><orcidid>https://orcid.org/0000-0002-8104-0930</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2024-06, Vol.9 (6), p.5496-5503
issn 2377-3766
2377-3766
language eng
recordid cdi_ieee_primary_10508037
source IEEE Electronic Library (IEL)
subjects Annotations
Data sets for robotic vision
Datasets
intelligent transportation systems
Laser radar
Lidar
Object detection
Object recognition
Perception
Performance evaluation
Point cloud compression
Robot sensing systems
segmentation and categorization
Semantic segmentation
Task analysis
title ParisLuco3D: A High-Quality Target Dataset for Domain Generalization of LiDAR Perception
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ParisLuco3D:%20A%20High-Quality%20Target%20Dataset%20for%20Domain%20Generalization%20of%20LiDAR%20Perception&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Sanchez,%20Jules&rft.date=2024-06-01&rft.volume=9&rft.issue=6&rft.spage=5496&rft.epage=5503&rft.pages=5496-5503&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2024.3393209&rft_dat=%3Cproquest_RIE%3E3050305205%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050305205&rft_id=info:pmid/&rft_ieee_id=10508037&rfr_iscdi=true