High Precision Time Synchronization Strategy for Low-Cost Embedded GNSS/MEMS-IMU Integrated Navigation Module
Time synchronization is the key technology of real-time integrated navigation, and its error decides the precision of integrated navigation. Global navigation satellite system (GNSS) and inertial navigation system (INS) real-time integrated navigation requires the fusion of GNSS and inertial measure...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2024-10, Vol.25 (10), p.14087-14099 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14099 |
---|---|
container_issue | 10 |
container_start_page | 14087 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 25 |
creator | Yan, Peihui Jiang, Jinguang Tan, Hongbin Zheng, Qiyuan Liu, Jingnan |
description | Time synchronization is the key technology of real-time integrated navigation, and its error decides the precision of integrated navigation. Global navigation satellite system (GNSS) and inertial navigation system (INS) real-time integrated navigation requires the fusion of GNSS and inertial measurement unit (IMU) data at 1PPS. However, due to data computation and circuit delay, it is impossible to receive two data simultaneously at 1PPS, resulting in the inability to achieve high-precision data fusion. In response to this issue, this paper proposes a novel time synchronization strategy, which first saves IMU data, waits for GNSS data to be received, and then fuses the two. The key to this approach is to ensure that the saved IMU data is processed within a sampling interval. This article adopts a one-step predictive Kalman filter algorithm to place the state prediction covariance matrix in the traditional algorithm into the measurement update process for execution so that only INS mechanization algorithms are executed during the state prediction process, which can significantly reduce the code runtime and ensure that the saved IMU data can be processed promptly. The correctness of the proposed algorithm was verified through real-time vehicle experiments in the real world. The test results show that data time synchronization can be achieved accurately to the order of microseconds with the proposed synchronization approach. The integrated navigation system with this strategy achieves performance with comparable real-time positioning and post-processing positioning accuracy. |
doi_str_mv | 10.1109/TITS.2024.3386970 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10507752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10507752</ieee_id><sourcerecordid>10_1109_TITS_2024_3386970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-272f4d9c79ae3d477d145a8e38020bb6d18d115f635b70b8c865517dcf0fc3013</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYMoOKc_QPAhf6DbvUnTpI8ypiusU2j3XNok3SJrK2lV5q93ZXvw6R4O5xwuHyGPCDNEiOd5kmczBiycca6iWMIVmaAQKgDA6HrULAxiEHBL7vr-4-SGAnFCmpXb7em7t9r1rmtp7hpLs2Or975r3W85jGY2-HKwuyOtO0_X3U-w6PqBLpvKGmMNfd1k2TxdplmQpFuatKfomDd0U3673Xki7czXwd6Tm7o89Pbhcqdk-7LMF6tg_faaLJ7XgWaohoBJVocm1jIuLTehlOb0baksV8CgqiKDyiCKOuKiklAprSIhUBpdQ605IJ8SPO9q3_W9t3Xx6V1T-mOBUIy8ipFXMfIqLrxOnadzx1lr_-UFSCkY_wOHnGcd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High Precision Time Synchronization Strategy for Low-Cost Embedded GNSS/MEMS-IMU Integrated Navigation Module</title><source>IEEE Electronic Library (IEL)</source><creator>Yan, Peihui ; Jiang, Jinguang ; Tan, Hongbin ; Zheng, Qiyuan ; Liu, Jingnan</creator><creatorcontrib>Yan, Peihui ; Jiang, Jinguang ; Tan, Hongbin ; Zheng, Qiyuan ; Liu, Jingnan</creatorcontrib><description>Time synchronization is the key technology of real-time integrated navigation, and its error decides the precision of integrated navigation. Global navigation satellite system (GNSS) and inertial navigation system (INS) real-time integrated navigation requires the fusion of GNSS and inertial measurement unit (IMU) data at 1PPS. However, due to data computation and circuit delay, it is impossible to receive two data simultaneously at 1PPS, resulting in the inability to achieve high-precision data fusion. In response to this issue, this paper proposes a novel time synchronization strategy, which first saves IMU data, waits for GNSS data to be received, and then fuses the two. The key to this approach is to ensure that the saved IMU data is processed within a sampling interval. This article adopts a one-step predictive Kalman filter algorithm to place the state prediction covariance matrix in the traditional algorithm into the measurement update process for execution so that only INS mechanization algorithms are executed during the state prediction process, which can significantly reduce the code runtime and ensure that the saved IMU data can be processed promptly. The correctness of the proposed algorithm was verified through real-time vehicle experiments in the real world. The test results show that data time synchronization can be achieved accurately to the order of microseconds with the proposed synchronization approach. The integrated navigation system with this strategy achieves performance with comparable real-time positioning and post-processing positioning accuracy.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3386970</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Global navigation satellite system ; global satellite navigation system ; Hardware ; Inertial navigation ; inertial navigation system ; integrated navigation ; Kalman filter ; Kalman filters ; Prediction algorithms ; Satellite navigation systems ; Synchronization ; Time synchronization</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-10, Vol.25 (10), p.14087-14099</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-272f4d9c79ae3d477d145a8e38020bb6d18d115f635b70b8c865517dcf0fc3013</cites><orcidid>0009-0003-5984-9500 ; 0000-0001-9661-3562 ; 0000-0002-0122-5514 ; 0009-0001-8704-9442 ; 0009-0003-5244-5474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10507752$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10507752$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yan, Peihui</creatorcontrib><creatorcontrib>Jiang, Jinguang</creatorcontrib><creatorcontrib>Tan, Hongbin</creatorcontrib><creatorcontrib>Zheng, Qiyuan</creatorcontrib><creatorcontrib>Liu, Jingnan</creatorcontrib><title>High Precision Time Synchronization Strategy for Low-Cost Embedded GNSS/MEMS-IMU Integrated Navigation Module</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Time synchronization is the key technology of real-time integrated navigation, and its error decides the precision of integrated navigation. Global navigation satellite system (GNSS) and inertial navigation system (INS) real-time integrated navigation requires the fusion of GNSS and inertial measurement unit (IMU) data at 1PPS. However, due to data computation and circuit delay, it is impossible to receive two data simultaneously at 1PPS, resulting in the inability to achieve high-precision data fusion. In response to this issue, this paper proposes a novel time synchronization strategy, which first saves IMU data, waits for GNSS data to be received, and then fuses the two. The key to this approach is to ensure that the saved IMU data is processed within a sampling interval. This article adopts a one-step predictive Kalman filter algorithm to place the state prediction covariance matrix in the traditional algorithm into the measurement update process for execution so that only INS mechanization algorithms are executed during the state prediction process, which can significantly reduce the code runtime and ensure that the saved IMU data can be processed promptly. The correctness of the proposed algorithm was verified through real-time vehicle experiments in the real world. The test results show that data time synchronization can be achieved accurately to the order of microseconds with the proposed synchronization approach. The integrated navigation system with this strategy achieves performance with comparable real-time positioning and post-processing positioning accuracy.</description><subject>Global navigation satellite system</subject><subject>global satellite navigation system</subject><subject>Hardware</subject><subject>Inertial navigation</subject><subject>inertial navigation system</subject><subject>integrated navigation</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>Prediction algorithms</subject><subject>Satellite navigation systems</subject><subject>Synchronization</subject><subject>Time synchronization</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFFLwzAUhYMoOKc_QPAhf6DbvUnTpI8ypiusU2j3XNok3SJrK2lV5q93ZXvw6R4O5xwuHyGPCDNEiOd5kmczBiycca6iWMIVmaAQKgDA6HrULAxiEHBL7vr-4-SGAnFCmpXb7em7t9r1rmtp7hpLs2Or975r3W85jGY2-HKwuyOtO0_X3U-w6PqBLpvKGmMNfd1k2TxdplmQpFuatKfomDd0U3673Xki7czXwd6Tm7o89Pbhcqdk-7LMF6tg_faaLJ7XgWaohoBJVocm1jIuLTehlOb0baksV8CgqiKDyiCKOuKiklAprSIhUBpdQ605IJ8SPO9q3_W9t3Xx6V1T-mOBUIy8ipFXMfIqLrxOnadzx1lr_-UFSCkY_wOHnGcd</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Yan, Peihui</creator><creator>Jiang, Jinguang</creator><creator>Tan, Hongbin</creator><creator>Zheng, Qiyuan</creator><creator>Liu, Jingnan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0003-5984-9500</orcidid><orcidid>https://orcid.org/0000-0001-9661-3562</orcidid><orcidid>https://orcid.org/0000-0002-0122-5514</orcidid><orcidid>https://orcid.org/0009-0001-8704-9442</orcidid><orcidid>https://orcid.org/0009-0003-5244-5474</orcidid></search><sort><creationdate>20241001</creationdate><title>High Precision Time Synchronization Strategy for Low-Cost Embedded GNSS/MEMS-IMU Integrated Navigation Module</title><author>Yan, Peihui ; Jiang, Jinguang ; Tan, Hongbin ; Zheng, Qiyuan ; Liu, Jingnan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-272f4d9c79ae3d477d145a8e38020bb6d18d115f635b70b8c865517dcf0fc3013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Global navigation satellite system</topic><topic>global satellite navigation system</topic><topic>Hardware</topic><topic>Inertial navigation</topic><topic>inertial navigation system</topic><topic>integrated navigation</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>Prediction algorithms</topic><topic>Satellite navigation systems</topic><topic>Synchronization</topic><topic>Time synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Peihui</creatorcontrib><creatorcontrib>Jiang, Jinguang</creatorcontrib><creatorcontrib>Tan, Hongbin</creatorcontrib><creatorcontrib>Zheng, Qiyuan</creatorcontrib><creatorcontrib>Liu, Jingnan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yan, Peihui</au><au>Jiang, Jinguang</au><au>Tan, Hongbin</au><au>Zheng, Qiyuan</au><au>Liu, Jingnan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Precision Time Synchronization Strategy for Low-Cost Embedded GNSS/MEMS-IMU Integrated Navigation Module</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>25</volume><issue>10</issue><spage>14087</spage><epage>14099</epage><pages>14087-14099</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Time synchronization is the key technology of real-time integrated navigation, and its error decides the precision of integrated navigation. Global navigation satellite system (GNSS) and inertial navigation system (INS) real-time integrated navigation requires the fusion of GNSS and inertial measurement unit (IMU) data at 1PPS. However, due to data computation and circuit delay, it is impossible to receive two data simultaneously at 1PPS, resulting in the inability to achieve high-precision data fusion. In response to this issue, this paper proposes a novel time synchronization strategy, which first saves IMU data, waits for GNSS data to be received, and then fuses the two. The key to this approach is to ensure that the saved IMU data is processed within a sampling interval. This article adopts a one-step predictive Kalman filter algorithm to place the state prediction covariance matrix in the traditional algorithm into the measurement update process for execution so that only INS mechanization algorithms are executed during the state prediction process, which can significantly reduce the code runtime and ensure that the saved IMU data can be processed promptly. The correctness of the proposed algorithm was verified through real-time vehicle experiments in the real world. The test results show that data time synchronization can be achieved accurately to the order of microseconds with the proposed synchronization approach. The integrated navigation system with this strategy achieves performance with comparable real-time positioning and post-processing positioning accuracy.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3386970</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0003-5984-9500</orcidid><orcidid>https://orcid.org/0000-0001-9661-3562</orcidid><orcidid>https://orcid.org/0000-0002-0122-5514</orcidid><orcidid>https://orcid.org/0009-0001-8704-9442</orcidid><orcidid>https://orcid.org/0009-0003-5244-5474</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2024-10, Vol.25 (10), p.14087-14099 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_ieee_primary_10507752 |
source | IEEE Electronic Library (IEL) |
subjects | Global navigation satellite system global satellite navigation system Hardware Inertial navigation inertial navigation system integrated navigation Kalman filter Kalman filters Prediction algorithms Satellite navigation systems Synchronization Time synchronization |
title | High Precision Time Synchronization Strategy for Low-Cost Embedded GNSS/MEMS-IMU Integrated Navigation Module |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T08%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Precision%20Time%20Synchronization%20Strategy%20for%20Low-Cost%20Embedded%20GNSS/MEMS-IMU%20Integrated%20Navigation%20Module&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Yan,%20Peihui&rft.date=2024-10-01&rft.volume=25&rft.issue=10&rft.spage=14087&rft.epage=14099&rft.pages=14087-14099&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3386970&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2024_3386970%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10507752&rfr_iscdi=true |