High Precision Time Synchronization Strategy for Low-Cost Embedded GNSS/MEMS-IMU Integrated Navigation Module

Time synchronization is the key technology of real-time integrated navigation, and its error decides the precision of integrated navigation. Global navigation satellite system (GNSS) and inertial navigation system (INS) real-time integrated navigation requires the fusion of GNSS and inertial measure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2024-10, Vol.25 (10), p.14087-14099
Hauptverfasser: Yan, Peihui, Jiang, Jinguang, Tan, Hongbin, Zheng, Qiyuan, Liu, Jingnan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14099
container_issue 10
container_start_page 14087
container_title IEEE transactions on intelligent transportation systems
container_volume 25
creator Yan, Peihui
Jiang, Jinguang
Tan, Hongbin
Zheng, Qiyuan
Liu, Jingnan
description Time synchronization is the key technology of real-time integrated navigation, and its error decides the precision of integrated navigation. Global navigation satellite system (GNSS) and inertial navigation system (INS) real-time integrated navigation requires the fusion of GNSS and inertial measurement unit (IMU) data at 1PPS. However, due to data computation and circuit delay, it is impossible to receive two data simultaneously at 1PPS, resulting in the inability to achieve high-precision data fusion. In response to this issue, this paper proposes a novel time synchronization strategy, which first saves IMU data, waits for GNSS data to be received, and then fuses the two. The key to this approach is to ensure that the saved IMU data is processed within a sampling interval. This article adopts a one-step predictive Kalman filter algorithm to place the state prediction covariance matrix in the traditional algorithm into the measurement update process for execution so that only INS mechanization algorithms are executed during the state prediction process, which can significantly reduce the code runtime and ensure that the saved IMU data can be processed promptly. The correctness of the proposed algorithm was verified through real-time vehicle experiments in the real world. The test results show that data time synchronization can be achieved accurately to the order of microseconds with the proposed synchronization approach. The integrated navigation system with this strategy achieves performance with comparable real-time positioning and post-processing positioning accuracy.
doi_str_mv 10.1109/TITS.2024.3386970
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10507752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10507752</ieee_id><sourcerecordid>10_1109_TITS_2024_3386970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-272f4d9c79ae3d477d145a8e38020bb6d18d115f635b70b8c865517dcf0fc3013</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYMoOKc_QPAhf6DbvUnTpI8ypiusU2j3XNok3SJrK2lV5q93ZXvw6R4O5xwuHyGPCDNEiOd5kmczBiycca6iWMIVmaAQKgDA6HrULAxiEHBL7vr-4-SGAnFCmpXb7em7t9r1rmtp7hpLs2Or975r3W85jGY2-HKwuyOtO0_X3U-w6PqBLpvKGmMNfd1k2TxdplmQpFuatKfomDd0U3673Xki7czXwd6Tm7o89Pbhcqdk-7LMF6tg_faaLJ7XgWaohoBJVocm1jIuLTehlOb0baksV8CgqiKDyiCKOuKiklAprSIhUBpdQ605IJ8SPO9q3_W9t3Xx6V1T-mOBUIy8ipFXMfIqLrxOnadzx1lr_-UFSCkY_wOHnGcd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High Precision Time Synchronization Strategy for Low-Cost Embedded GNSS/MEMS-IMU Integrated Navigation Module</title><source>IEEE Electronic Library (IEL)</source><creator>Yan, Peihui ; Jiang, Jinguang ; Tan, Hongbin ; Zheng, Qiyuan ; Liu, Jingnan</creator><creatorcontrib>Yan, Peihui ; Jiang, Jinguang ; Tan, Hongbin ; Zheng, Qiyuan ; Liu, Jingnan</creatorcontrib><description>Time synchronization is the key technology of real-time integrated navigation, and its error decides the precision of integrated navigation. Global navigation satellite system (GNSS) and inertial navigation system (INS) real-time integrated navigation requires the fusion of GNSS and inertial measurement unit (IMU) data at 1PPS. However, due to data computation and circuit delay, it is impossible to receive two data simultaneously at 1PPS, resulting in the inability to achieve high-precision data fusion. In response to this issue, this paper proposes a novel time synchronization strategy, which first saves IMU data, waits for GNSS data to be received, and then fuses the two. The key to this approach is to ensure that the saved IMU data is processed within a sampling interval. This article adopts a one-step predictive Kalman filter algorithm to place the state prediction covariance matrix in the traditional algorithm into the measurement update process for execution so that only INS mechanization algorithms are executed during the state prediction process, which can significantly reduce the code runtime and ensure that the saved IMU data can be processed promptly. The correctness of the proposed algorithm was verified through real-time vehicle experiments in the real world. The test results show that data time synchronization can be achieved accurately to the order of microseconds with the proposed synchronization approach. The integrated navigation system with this strategy achieves performance with comparable real-time positioning and post-processing positioning accuracy.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3386970</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Global navigation satellite system ; global satellite navigation system ; Hardware ; Inertial navigation ; inertial navigation system ; integrated navigation ; Kalman filter ; Kalman filters ; Prediction algorithms ; Satellite navigation systems ; Synchronization ; Time synchronization</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-10, Vol.25 (10), p.14087-14099</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-272f4d9c79ae3d477d145a8e38020bb6d18d115f635b70b8c865517dcf0fc3013</cites><orcidid>0009-0003-5984-9500 ; 0000-0001-9661-3562 ; 0000-0002-0122-5514 ; 0009-0001-8704-9442 ; 0009-0003-5244-5474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10507752$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10507752$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yan, Peihui</creatorcontrib><creatorcontrib>Jiang, Jinguang</creatorcontrib><creatorcontrib>Tan, Hongbin</creatorcontrib><creatorcontrib>Zheng, Qiyuan</creatorcontrib><creatorcontrib>Liu, Jingnan</creatorcontrib><title>High Precision Time Synchronization Strategy for Low-Cost Embedded GNSS/MEMS-IMU Integrated Navigation Module</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Time synchronization is the key technology of real-time integrated navigation, and its error decides the precision of integrated navigation. Global navigation satellite system (GNSS) and inertial navigation system (INS) real-time integrated navigation requires the fusion of GNSS and inertial measurement unit (IMU) data at 1PPS. However, due to data computation and circuit delay, it is impossible to receive two data simultaneously at 1PPS, resulting in the inability to achieve high-precision data fusion. In response to this issue, this paper proposes a novel time synchronization strategy, which first saves IMU data, waits for GNSS data to be received, and then fuses the two. The key to this approach is to ensure that the saved IMU data is processed within a sampling interval. This article adopts a one-step predictive Kalman filter algorithm to place the state prediction covariance matrix in the traditional algorithm into the measurement update process for execution so that only INS mechanization algorithms are executed during the state prediction process, which can significantly reduce the code runtime and ensure that the saved IMU data can be processed promptly. The correctness of the proposed algorithm was verified through real-time vehicle experiments in the real world. The test results show that data time synchronization can be achieved accurately to the order of microseconds with the proposed synchronization approach. The integrated navigation system with this strategy achieves performance with comparable real-time positioning and post-processing positioning accuracy.</description><subject>Global navigation satellite system</subject><subject>global satellite navigation system</subject><subject>Hardware</subject><subject>Inertial navigation</subject><subject>inertial navigation system</subject><subject>integrated navigation</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>Prediction algorithms</subject><subject>Satellite navigation systems</subject><subject>Synchronization</subject><subject>Time synchronization</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFFLwzAUhYMoOKc_QPAhf6DbvUnTpI8ypiusU2j3XNok3SJrK2lV5q93ZXvw6R4O5xwuHyGPCDNEiOd5kmczBiycca6iWMIVmaAQKgDA6HrULAxiEHBL7vr-4-SGAnFCmpXb7em7t9r1rmtp7hpLs2Or975r3W85jGY2-HKwuyOtO0_X3U-w6PqBLpvKGmMNfd1k2TxdplmQpFuatKfomDd0U3673Xki7czXwd6Tm7o89Pbhcqdk-7LMF6tg_faaLJ7XgWaohoBJVocm1jIuLTehlOb0baksV8CgqiKDyiCKOuKiklAprSIhUBpdQ605IJ8SPO9q3_W9t3Xx6V1T-mOBUIy8ipFXMfIqLrxOnadzx1lr_-UFSCkY_wOHnGcd</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Yan, Peihui</creator><creator>Jiang, Jinguang</creator><creator>Tan, Hongbin</creator><creator>Zheng, Qiyuan</creator><creator>Liu, Jingnan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0003-5984-9500</orcidid><orcidid>https://orcid.org/0000-0001-9661-3562</orcidid><orcidid>https://orcid.org/0000-0002-0122-5514</orcidid><orcidid>https://orcid.org/0009-0001-8704-9442</orcidid><orcidid>https://orcid.org/0009-0003-5244-5474</orcidid></search><sort><creationdate>20241001</creationdate><title>High Precision Time Synchronization Strategy for Low-Cost Embedded GNSS/MEMS-IMU Integrated Navigation Module</title><author>Yan, Peihui ; Jiang, Jinguang ; Tan, Hongbin ; Zheng, Qiyuan ; Liu, Jingnan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-272f4d9c79ae3d477d145a8e38020bb6d18d115f635b70b8c865517dcf0fc3013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Global navigation satellite system</topic><topic>global satellite navigation system</topic><topic>Hardware</topic><topic>Inertial navigation</topic><topic>inertial navigation system</topic><topic>integrated navigation</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>Prediction algorithms</topic><topic>Satellite navigation systems</topic><topic>Synchronization</topic><topic>Time synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Peihui</creatorcontrib><creatorcontrib>Jiang, Jinguang</creatorcontrib><creatorcontrib>Tan, Hongbin</creatorcontrib><creatorcontrib>Zheng, Qiyuan</creatorcontrib><creatorcontrib>Liu, Jingnan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yan, Peihui</au><au>Jiang, Jinguang</au><au>Tan, Hongbin</au><au>Zheng, Qiyuan</au><au>Liu, Jingnan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Precision Time Synchronization Strategy for Low-Cost Embedded GNSS/MEMS-IMU Integrated Navigation Module</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>25</volume><issue>10</issue><spage>14087</spage><epage>14099</epage><pages>14087-14099</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Time synchronization is the key technology of real-time integrated navigation, and its error decides the precision of integrated navigation. Global navigation satellite system (GNSS) and inertial navigation system (INS) real-time integrated navigation requires the fusion of GNSS and inertial measurement unit (IMU) data at 1PPS. However, due to data computation and circuit delay, it is impossible to receive two data simultaneously at 1PPS, resulting in the inability to achieve high-precision data fusion. In response to this issue, this paper proposes a novel time synchronization strategy, which first saves IMU data, waits for GNSS data to be received, and then fuses the two. The key to this approach is to ensure that the saved IMU data is processed within a sampling interval. This article adopts a one-step predictive Kalman filter algorithm to place the state prediction covariance matrix in the traditional algorithm into the measurement update process for execution so that only INS mechanization algorithms are executed during the state prediction process, which can significantly reduce the code runtime and ensure that the saved IMU data can be processed promptly. The correctness of the proposed algorithm was verified through real-time vehicle experiments in the real world. The test results show that data time synchronization can be achieved accurately to the order of microseconds with the proposed synchronization approach. The integrated navigation system with this strategy achieves performance with comparable real-time positioning and post-processing positioning accuracy.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3386970</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0003-5984-9500</orcidid><orcidid>https://orcid.org/0000-0001-9661-3562</orcidid><orcidid>https://orcid.org/0000-0002-0122-5514</orcidid><orcidid>https://orcid.org/0009-0001-8704-9442</orcidid><orcidid>https://orcid.org/0009-0003-5244-5474</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-10, Vol.25 (10), p.14087-14099
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_10507752
source IEEE Electronic Library (IEL)
subjects Global navigation satellite system
global satellite navigation system
Hardware
Inertial navigation
inertial navigation system
integrated navigation
Kalman filter
Kalman filters
Prediction algorithms
Satellite navigation systems
Synchronization
Time synchronization
title High Precision Time Synchronization Strategy for Low-Cost Embedded GNSS/MEMS-IMU Integrated Navigation Module
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T08%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Precision%20Time%20Synchronization%20Strategy%20for%20Low-Cost%20Embedded%20GNSS/MEMS-IMU%20Integrated%20Navigation%20Module&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Yan,%20Peihui&rft.date=2024-10-01&rft.volume=25&rft.issue=10&rft.spage=14087&rft.epage=14099&rft.pages=14087-14099&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3386970&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2024_3386970%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10507752&rfr_iscdi=true