Preserving Label-Related Domain-Specific Information for Cross-Domain Semantic Segmentation

Unsupervised domain adaptation semantic segmentation (UDASS) methods aim to learn domain-invariant information for alleviating the distribution shift problem between the source and target domains. However, ignoring the learning of domain-specific information that is label-related may limit the class...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2024-10, Vol.25 (10), p.14917-14931
Hauptverfasser: Liao, Muxin, Tian, Shishun, Zhang, Yuhang, Hua, Guoguang, Zou, Wenbin, Li, Xia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14931
container_issue 10
container_start_page 14917
container_title IEEE transactions on intelligent transportation systems
container_volume 25
creator Liao, Muxin
Tian, Shishun
Zhang, Yuhang
Hua, Guoguang
Zou, Wenbin
Li, Xia
description Unsupervised domain adaptation semantic segmentation (UDASS) methods aim to learn domain-invariant information for alleviating the distribution shift problem between the source and target domains. However, ignoring the learning of domain-specific information that is label-related may limit the class discriminability on the target domain. We argue that a good representation for the UDASS task not only contains domain-invariant information but also preserves label-related domain-specific information. In this paper, a novel frequency spectrum domain adaptation approach via meta-learning (ML-FSDA) is proposed to achieve this goal for improving the class discriminability and generalization ability. ML-FSDA contains a frequency-spectrum meta-learning framework (FMF) and a class-aware domain-specific memory bank (CDMB). Specifically, first, inspired by the observation that the high-frequency component is consistent across different domains while the low-frequency component is much more domain-specific, the FMF aims to respectively learn label-related domain-specific and domain-invariant information from low-frequency and high-frequency images in a unified framework via the meta-learning strategy. Second, the CDMB is designed to preserve the label-related domain-specific information of each class in an external memory bank while the CDMB is updated in every iteration of the meta-training stage. Finally, the CDMB is utilized to embed the label-related domain-specific information into domain-invariant information at the class level during the meta-testing stage to enhance the class discriminability on the target domain. Extensive experiments demonstrate the effectiveness of ML-FSDA on two challenging cross-domain semantic segmentation benchmarks. Notably, for the GTA5 to Cityscapes task and the SYNTHIA to Cityscapes task, the proposed ML-FSDA achieves superior performance with 77.3% mIoU and 68.8% mIoU, respectively. The source code is released at https://github.com/seabearlmx/FSL .
doi_str_mv 10.1109/TITS.2024.3386743
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10507736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10507736</ieee_id><sourcerecordid>10_1109_TITS_2024_3386743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-c837fc095dfca1b820c6bb5c53ed065cd4b14baa72080ecfcee00763ca1fd4b3</originalsourceid><addsrcrecordid>eNpNkMtKxTAQhoMoeDz6AIKLvkDqpEl6WUq9FQqK7c5FSNPJIdLLIS2Cb29rz8LV_Mx8MwwfIbcMQsYgu6-LugojiETIeRongp-RHZMypQAsPl9zJGgGEi7J1TR9LV0hGduRz3ePE_pvNxyCUjfY0Q_s9Ixt8Dj22g20OqJx1pmgGOzoez27cQiWFOR-nCa6UUGFvR7mharw0OMw_2HX5MLqbsKbU92T-vmpzl9p-fZS5A8lNRFLZ2pSnlgDmWyt0axJIzBx00gjObYQS9OKholG6ySCFNBYgwiQxHyB7TLje8K2s2b9yKNVR-967X8UA7XKUasctcpRJznLzt224xDxHy8hSXjMfwGjYGMm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Preserving Label-Related Domain-Specific Information for Cross-Domain Semantic Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Liao, Muxin ; Tian, Shishun ; Zhang, Yuhang ; Hua, Guoguang ; Zou, Wenbin ; Li, Xia</creator><creatorcontrib>Liao, Muxin ; Tian, Shishun ; Zhang, Yuhang ; Hua, Guoguang ; Zou, Wenbin ; Li, Xia</creatorcontrib><description>Unsupervised domain adaptation semantic segmentation (UDASS) methods aim to learn domain-invariant information for alleviating the distribution shift problem between the source and target domains. However, ignoring the learning of domain-specific information that is label-related may limit the class discriminability on the target domain. We argue that a good representation for the UDASS task not only contains domain-invariant information but also preserves label-related domain-specific information. In this paper, a novel frequency spectrum domain adaptation approach via meta-learning (ML-FSDA) is proposed to achieve this goal for improving the class discriminability and generalization ability. ML-FSDA contains a frequency-spectrum meta-learning framework (FMF) and a class-aware domain-specific memory bank (CDMB). Specifically, first, inspired by the observation that the high-frequency component is consistent across different domains while the low-frequency component is much more domain-specific, the FMF aims to respectively learn label-related domain-specific and domain-invariant information from low-frequency and high-frequency images in a unified framework via the meta-learning strategy. Second, the CDMB is designed to preserve the label-related domain-specific information of each class in an external memory bank while the CDMB is updated in every iteration of the meta-training stage. Finally, the CDMB is utilized to embed the label-related domain-specific information into domain-invariant information at the class level during the meta-testing stage to enhance the class discriminability on the target domain. Extensive experiments demonstrate the effectiveness of ML-FSDA on two challenging cross-domain semantic segmentation benchmarks. Notably, for the GTA5 to Cityscapes task and the SYNTHIA to Cityscapes task, the proposed ML-FSDA achieves superior performance with 77.3% mIoU and 68.8% mIoU, respectively. The source code is released at https://github.com/seabearlmx/FSL .</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3386743</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>class-aware domain-specific memory bank ; Cutoff frequency ; Domain adaptation ; Frequency-domain analysis ; frequency-spectrum meta-learning framework ; Metalearning ; Semantic segmentation ; Semantics ; Training ; Unsupervised learning</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-10, Vol.25 (10), p.14917-14931</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-c837fc095dfca1b820c6bb5c53ed065cd4b14baa72080ecfcee00763ca1fd4b3</cites><orcidid>0000-0001-6404-9952 ; 0000-0003-1389-9089 ; 0000-0002-8043-9966 ; 0000-0002-8461-1946 ; 0000-0002-7616-8382</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10507736$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10507736$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liao, Muxin</creatorcontrib><creatorcontrib>Tian, Shishun</creatorcontrib><creatorcontrib>Zhang, Yuhang</creatorcontrib><creatorcontrib>Hua, Guoguang</creatorcontrib><creatorcontrib>Zou, Wenbin</creatorcontrib><creatorcontrib>Li, Xia</creatorcontrib><title>Preserving Label-Related Domain-Specific Information for Cross-Domain Semantic Segmentation</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Unsupervised domain adaptation semantic segmentation (UDASS) methods aim to learn domain-invariant information for alleviating the distribution shift problem between the source and target domains. However, ignoring the learning of domain-specific information that is label-related may limit the class discriminability on the target domain. We argue that a good representation for the UDASS task not only contains domain-invariant information but also preserves label-related domain-specific information. In this paper, a novel frequency spectrum domain adaptation approach via meta-learning (ML-FSDA) is proposed to achieve this goal for improving the class discriminability and generalization ability. ML-FSDA contains a frequency-spectrum meta-learning framework (FMF) and a class-aware domain-specific memory bank (CDMB). Specifically, first, inspired by the observation that the high-frequency component is consistent across different domains while the low-frequency component is much more domain-specific, the FMF aims to respectively learn label-related domain-specific and domain-invariant information from low-frequency and high-frequency images in a unified framework via the meta-learning strategy. Second, the CDMB is designed to preserve the label-related domain-specific information of each class in an external memory bank while the CDMB is updated in every iteration of the meta-training stage. Finally, the CDMB is utilized to embed the label-related domain-specific information into domain-invariant information at the class level during the meta-testing stage to enhance the class discriminability on the target domain. Extensive experiments demonstrate the effectiveness of ML-FSDA on two challenging cross-domain semantic segmentation benchmarks. Notably, for the GTA5 to Cityscapes task and the SYNTHIA to Cityscapes task, the proposed ML-FSDA achieves superior performance with 77.3% mIoU and 68.8% mIoU, respectively. The source code is released at https://github.com/seabearlmx/FSL .</description><subject>class-aware domain-specific memory bank</subject><subject>Cutoff frequency</subject><subject>Domain adaptation</subject><subject>Frequency-domain analysis</subject><subject>frequency-spectrum meta-learning framework</subject><subject>Metalearning</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Training</subject><subject>Unsupervised learning</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtKxTAQhoMoeDz6AIKLvkDqpEl6WUq9FQqK7c5FSNPJIdLLIS2Cb29rz8LV_Mx8MwwfIbcMQsYgu6-LugojiETIeRongp-RHZMypQAsPl9zJGgGEi7J1TR9LV0hGduRz3ePE_pvNxyCUjfY0Q_s9Ixt8Dj22g20OqJx1pmgGOzoez27cQiWFOR-nCa6UUGFvR7mharw0OMw_2HX5MLqbsKbU92T-vmpzl9p-fZS5A8lNRFLZ2pSnlgDmWyt0axJIzBx00gjObYQS9OKholG6ySCFNBYgwiQxHyB7TLje8K2s2b9yKNVR-967X8UA7XKUasctcpRJznLzt224xDxHy8hSXjMfwGjYGMm</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Liao, Muxin</creator><creator>Tian, Shishun</creator><creator>Zhang, Yuhang</creator><creator>Hua, Guoguang</creator><creator>Zou, Wenbin</creator><creator>Li, Xia</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6404-9952</orcidid><orcidid>https://orcid.org/0000-0003-1389-9089</orcidid><orcidid>https://orcid.org/0000-0002-8043-9966</orcidid><orcidid>https://orcid.org/0000-0002-8461-1946</orcidid><orcidid>https://orcid.org/0000-0002-7616-8382</orcidid></search><sort><creationdate>20241001</creationdate><title>Preserving Label-Related Domain-Specific Information for Cross-Domain Semantic Segmentation</title><author>Liao, Muxin ; Tian, Shishun ; Zhang, Yuhang ; Hua, Guoguang ; Zou, Wenbin ; Li, Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-c837fc095dfca1b820c6bb5c53ed065cd4b14baa72080ecfcee00763ca1fd4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>class-aware domain-specific memory bank</topic><topic>Cutoff frequency</topic><topic>Domain adaptation</topic><topic>Frequency-domain analysis</topic><topic>frequency-spectrum meta-learning framework</topic><topic>Metalearning</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Training</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Muxin</creatorcontrib><creatorcontrib>Tian, Shishun</creatorcontrib><creatorcontrib>Zhang, Yuhang</creatorcontrib><creatorcontrib>Hua, Guoguang</creatorcontrib><creatorcontrib>Zou, Wenbin</creatorcontrib><creatorcontrib>Li, Xia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liao, Muxin</au><au>Tian, Shishun</au><au>Zhang, Yuhang</au><au>Hua, Guoguang</au><au>Zou, Wenbin</au><au>Li, Xia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preserving Label-Related Domain-Specific Information for Cross-Domain Semantic Segmentation</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>25</volume><issue>10</issue><spage>14917</spage><epage>14931</epage><pages>14917-14931</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Unsupervised domain adaptation semantic segmentation (UDASS) methods aim to learn domain-invariant information for alleviating the distribution shift problem between the source and target domains. However, ignoring the learning of domain-specific information that is label-related may limit the class discriminability on the target domain. We argue that a good representation for the UDASS task not only contains domain-invariant information but also preserves label-related domain-specific information. In this paper, a novel frequency spectrum domain adaptation approach via meta-learning (ML-FSDA) is proposed to achieve this goal for improving the class discriminability and generalization ability. ML-FSDA contains a frequency-spectrum meta-learning framework (FMF) and a class-aware domain-specific memory bank (CDMB). Specifically, first, inspired by the observation that the high-frequency component is consistent across different domains while the low-frequency component is much more domain-specific, the FMF aims to respectively learn label-related domain-specific and domain-invariant information from low-frequency and high-frequency images in a unified framework via the meta-learning strategy. Second, the CDMB is designed to preserve the label-related domain-specific information of each class in an external memory bank while the CDMB is updated in every iteration of the meta-training stage. Finally, the CDMB is utilized to embed the label-related domain-specific information into domain-invariant information at the class level during the meta-testing stage to enhance the class discriminability on the target domain. Extensive experiments demonstrate the effectiveness of ML-FSDA on two challenging cross-domain semantic segmentation benchmarks. Notably, for the GTA5 to Cityscapes task and the SYNTHIA to Cityscapes task, the proposed ML-FSDA achieves superior performance with 77.3% mIoU and 68.8% mIoU, respectively. The source code is released at https://github.com/seabearlmx/FSL .</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3386743</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6404-9952</orcidid><orcidid>https://orcid.org/0000-0003-1389-9089</orcidid><orcidid>https://orcid.org/0000-0002-8043-9966</orcidid><orcidid>https://orcid.org/0000-0002-8461-1946</orcidid><orcidid>https://orcid.org/0000-0002-7616-8382</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-10, Vol.25 (10), p.14917-14931
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_10507736
source IEEE Electronic Library (IEL)
subjects class-aware domain-specific memory bank
Cutoff frequency
Domain adaptation
Frequency-domain analysis
frequency-spectrum meta-learning framework
Metalearning
Semantic segmentation
Semantics
Training
Unsupervised learning
title Preserving Label-Related Domain-Specific Information for Cross-Domain Semantic Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A22%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preserving%20Label-Related%20Domain-Specific%20Information%20for%20Cross-Domain%20Semantic%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Liao,%20Muxin&rft.date=2024-10-01&rft.volume=25&rft.issue=10&rft.spage=14917&rft.epage=14931&rft.pages=14917-14931&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3386743&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2024_3386743%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10507736&rfr_iscdi=true