Area-Efficient QC-LDPC Decoding Architecture With Thermometer Code-Based Sorting and Relative Quasi-Cyclic Shifting
The 5G New-Radio (NR) communication standard requires high throughput and low latency, so low-density parity-check (LDPC) codes, which have higher inherent parallelism and lower decoding complexity than turbo codes, were adopted as the main coding method for data channels. In traditional LDPC min-su...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2024-06, Vol.71 (6), p.2897-2910 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2910 |
---|---|
container_issue | 6 |
container_start_page | 2897 |
container_title | IEEE transactions on circuits and systems. I, Regular papers |
container_volume | 71 |
creator | Jang, Boseon Jang, Hyejung Kim, Sungho Choi, Kangjoon Park, In-Cheol |
description | The 5G New-Radio (NR) communication standard requires high throughput and low latency, so low-density parity-check (LDPC) codes, which have higher inherent parallelism and lower decoding complexity than turbo codes, were adopted as the main coding method for data channels. In traditional LDPC min-sum decoders, the check node unit was realized using a sorting unit based on the min-tree structure. However, this structure resulted in high hardware complexity and long latency. To address this issue, we propose a new sorting method based on the thermometer code-based number system. Additionally, we introduce a new LDPC decoding architecture that reduces the number of QSN stages from two to one, significantly lowering the shifting logic complexity needed to support different lifting sizes. This is achieved by using relative shift amounts instead of absolute shift amounts specified in the parity check matrix. The proposed decoder implemented using a partially parallel structure in a 65nm CMOS technology satisfies the various operation modes and the throughput requirements of the 5G NR standard, and boasts a higher normalized throughput than state-of-the-art LDPC decoders. |
doi_str_mv | 10.1109/TCSI.2024.3389040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10507156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10507156</ieee_id><sourcerecordid>3061458566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-da122ec3586d5146befaccafbb4c5d863ff4f677560c62449504951fc3aa7e943</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhoMoWKs_QPCw4Hnrfic51rRqoaC1FY9hu5k1W9qm7m6E_nsT6sHD8M7heWfgSZJbSkaUkvxhVSxnI0aYGHGe5USQs2RApcwwyYg673eR44yz7DK5CmFDCMsJp4MkjD1oPLXWGQf7iBYFnk_eCjQB01Ru_4XG3tQugomtB_TpYo1WNfhds4MIHhVNBfhRB6jQsvGxL-h9hd5hq6P7AbRodXC4OJqtM2hZO9sj18mF1dsAN385TD6epqviBc9fn2fFeI4NEyriSlPGwHCZqUpSodZgtTHartfCyCpT3FphVZpKRYxiQuSSdEOt4VqnkAs-TO5Pdw---W4hxHLTtH7fvSw5UVTITCrVUfREGd-E4MGWB-922h9LSsrebdm7LXu35Z_brnN36jgA-MdLklKp-C8yTnWG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061458566</pqid></control><display><type>article</type><title>Area-Efficient QC-LDPC Decoding Architecture With Thermometer Code-Based Sorting and Relative Quasi-Cyclic Shifting</title><source>IEEE Electronic Library (IEL)</source><creator>Jang, Boseon ; Jang, Hyejung ; Kim, Sungho ; Choi, Kangjoon ; Park, In-Cheol</creator><creatorcontrib>Jang, Boseon ; Jang, Hyejung ; Kim, Sungho ; Choi, Kangjoon ; Park, In-Cheol</creatorcontrib><description>The 5G New-Radio (NR) communication standard requires high throughput and low latency, so low-density parity-check (LDPC) codes, which have higher inherent parallelism and lower decoding complexity than turbo codes, were adopted as the main coding method for data channels. In traditional LDPC min-sum decoders, the check node unit was realized using a sorting unit based on the min-tree structure. However, this structure resulted in high hardware complexity and long latency. To address this issue, we propose a new sorting method based on the thermometer code-based number system. Additionally, we introduce a new LDPC decoding architecture that reduces the number of QSN stages from two to one, significantly lowering the shifting logic complexity needed to support different lifting sizes. This is achieved by using relative shift amounts instead of absolute shift amounts specified in the parity check matrix. The proposed decoder implemented using a partially parallel structure in a 65nm CMOS technology satisfies the various operation modes and the throughput requirements of the 5G NR standard, and boasts a higher normalized throughput than state-of-the-art LDPC decoders.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2024.3389040</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>5G mobile communication ; 5G new-radio standard ; area-efficient ; Codes ; Complexity ; Complexity theory ; Decoders ; Decoding ; Error correcting codes ; Hardware ; Low-density parity-check codes ; normalized min-sum algorithm ; Number systems ; Parity ; Parity check codes ; Phase change materials ; quasi-cyclic LDPC decoder ; thermometer code ; Thermometers ; Thermometry ; Throughput ; Turbo codes ; VLSI hardware implementation</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2024-06, Vol.71 (6), p.2897-2910</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-da122ec3586d5146befaccafbb4c5d863ff4f677560c62449504951fc3aa7e943</cites><orcidid>0009-0001-0325-9072 ; 0000-0002-1128-0429 ; 0009-0004-4137-7688 ; 0009-0008-3916-720X ; 0000-0003-3524-2838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10507156$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10507156$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jang, Boseon</creatorcontrib><creatorcontrib>Jang, Hyejung</creatorcontrib><creatorcontrib>Kim, Sungho</creatorcontrib><creatorcontrib>Choi, Kangjoon</creatorcontrib><creatorcontrib>Park, In-Cheol</creatorcontrib><title>Area-Efficient QC-LDPC Decoding Architecture With Thermometer Code-Based Sorting and Relative Quasi-Cyclic Shifting</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>The 5G New-Radio (NR) communication standard requires high throughput and low latency, so low-density parity-check (LDPC) codes, which have higher inherent parallelism and lower decoding complexity than turbo codes, were adopted as the main coding method for data channels. In traditional LDPC min-sum decoders, the check node unit was realized using a sorting unit based on the min-tree structure. However, this structure resulted in high hardware complexity and long latency. To address this issue, we propose a new sorting method based on the thermometer code-based number system. Additionally, we introduce a new LDPC decoding architecture that reduces the number of QSN stages from two to one, significantly lowering the shifting logic complexity needed to support different lifting sizes. This is achieved by using relative shift amounts instead of absolute shift amounts specified in the parity check matrix. The proposed decoder implemented using a partially parallel structure in a 65nm CMOS technology satisfies the various operation modes and the throughput requirements of the 5G NR standard, and boasts a higher normalized throughput than state-of-the-art LDPC decoders.</description><subject>5G mobile communication</subject><subject>5G new-radio standard</subject><subject>area-efficient</subject><subject>Codes</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Decoders</subject><subject>Decoding</subject><subject>Error correcting codes</subject><subject>Hardware</subject><subject>Low-density parity-check codes</subject><subject>normalized min-sum algorithm</subject><subject>Number systems</subject><subject>Parity</subject><subject>Parity check codes</subject><subject>Phase change materials</subject><subject>quasi-cyclic LDPC decoder</subject><subject>thermometer code</subject><subject>Thermometers</subject><subject>Thermometry</subject><subject>Throughput</subject><subject>Turbo codes</subject><subject>VLSI hardware implementation</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhoMoWKs_QPCw4Hnrfic51rRqoaC1FY9hu5k1W9qm7m6E_nsT6sHD8M7heWfgSZJbSkaUkvxhVSxnI0aYGHGe5USQs2RApcwwyYg673eR44yz7DK5CmFDCMsJp4MkjD1oPLXWGQf7iBYFnk_eCjQB01Ru_4XG3tQugomtB_TpYo1WNfhds4MIHhVNBfhRB6jQsvGxL-h9hd5hq6P7AbRodXC4OJqtM2hZO9sj18mF1dsAN385TD6epqviBc9fn2fFeI4NEyriSlPGwHCZqUpSodZgtTHartfCyCpT3FphVZpKRYxiQuSSdEOt4VqnkAs-TO5Pdw---W4hxHLTtH7fvSw5UVTITCrVUfREGd-E4MGWB-922h9LSsrebdm7LXu35Z_brnN36jgA-MdLklKp-C8yTnWG</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Jang, Boseon</creator><creator>Jang, Hyejung</creator><creator>Kim, Sungho</creator><creator>Choi, Kangjoon</creator><creator>Park, In-Cheol</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0001-0325-9072</orcidid><orcidid>https://orcid.org/0000-0002-1128-0429</orcidid><orcidid>https://orcid.org/0009-0004-4137-7688</orcidid><orcidid>https://orcid.org/0009-0008-3916-720X</orcidid><orcidid>https://orcid.org/0000-0003-3524-2838</orcidid></search><sort><creationdate>20240601</creationdate><title>Area-Efficient QC-LDPC Decoding Architecture With Thermometer Code-Based Sorting and Relative Quasi-Cyclic Shifting</title><author>Jang, Boseon ; Jang, Hyejung ; Kim, Sungho ; Choi, Kangjoon ; Park, In-Cheol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-da122ec3586d5146befaccafbb4c5d863ff4f677560c62449504951fc3aa7e943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>5G mobile communication</topic><topic>5G new-radio standard</topic><topic>area-efficient</topic><topic>Codes</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Decoders</topic><topic>Decoding</topic><topic>Error correcting codes</topic><topic>Hardware</topic><topic>Low-density parity-check codes</topic><topic>normalized min-sum algorithm</topic><topic>Number systems</topic><topic>Parity</topic><topic>Parity check codes</topic><topic>Phase change materials</topic><topic>quasi-cyclic LDPC decoder</topic><topic>thermometer code</topic><topic>Thermometers</topic><topic>Thermometry</topic><topic>Throughput</topic><topic>Turbo codes</topic><topic>VLSI hardware implementation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Boseon</creatorcontrib><creatorcontrib>Jang, Hyejung</creatorcontrib><creatorcontrib>Kim, Sungho</creatorcontrib><creatorcontrib>Choi, Kangjoon</creatorcontrib><creatorcontrib>Park, In-Cheol</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jang, Boseon</au><au>Jang, Hyejung</au><au>Kim, Sungho</au><au>Choi, Kangjoon</au><au>Park, In-Cheol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Area-Efficient QC-LDPC Decoding Architecture With Thermometer Code-Based Sorting and Relative Quasi-Cyclic Shifting</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>71</volume><issue>6</issue><spage>2897</spage><epage>2910</epage><pages>2897-2910</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>The 5G New-Radio (NR) communication standard requires high throughput and low latency, so low-density parity-check (LDPC) codes, which have higher inherent parallelism and lower decoding complexity than turbo codes, were adopted as the main coding method for data channels. In traditional LDPC min-sum decoders, the check node unit was realized using a sorting unit based on the min-tree structure. However, this structure resulted in high hardware complexity and long latency. To address this issue, we propose a new sorting method based on the thermometer code-based number system. Additionally, we introduce a new LDPC decoding architecture that reduces the number of QSN stages from two to one, significantly lowering the shifting logic complexity needed to support different lifting sizes. This is achieved by using relative shift amounts instead of absolute shift amounts specified in the parity check matrix. The proposed decoder implemented using a partially parallel structure in a 65nm CMOS technology satisfies the various operation modes and the throughput requirements of the 5G NR standard, and boasts a higher normalized throughput than state-of-the-art LDPC decoders.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2024.3389040</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0001-0325-9072</orcidid><orcidid>https://orcid.org/0000-0002-1128-0429</orcidid><orcidid>https://orcid.org/0009-0004-4137-7688</orcidid><orcidid>https://orcid.org/0009-0008-3916-720X</orcidid><orcidid>https://orcid.org/0000-0003-3524-2838</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-8328 |
ispartof | IEEE transactions on circuits and systems. I, Regular papers, 2024-06, Vol.71 (6), p.2897-2910 |
issn | 1549-8328 1558-0806 |
language | eng |
recordid | cdi_ieee_primary_10507156 |
source | IEEE Electronic Library (IEL) |
subjects | 5G mobile communication 5G new-radio standard area-efficient Codes Complexity Complexity theory Decoders Decoding Error correcting codes Hardware Low-density parity-check codes normalized min-sum algorithm Number systems Parity Parity check codes Phase change materials quasi-cyclic LDPC decoder thermometer code Thermometers Thermometry Throughput Turbo codes VLSI hardware implementation |
title | Area-Efficient QC-LDPC Decoding Architecture With Thermometer Code-Based Sorting and Relative Quasi-Cyclic Shifting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A20%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Area-Efficient%20QC-LDPC%20Decoding%20Architecture%20With%20Thermometer%20Code-Based%20Sorting%20and%20Relative%20Quasi-Cyclic%20Shifting&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Jang,%20Boseon&rft.date=2024-06-01&rft.volume=71&rft.issue=6&rft.spage=2897&rft.epage=2910&rft.pages=2897-2910&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2024.3389040&rft_dat=%3Cproquest_RIE%3E3061458566%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3061458566&rft_id=info:pmid/&rft_ieee_id=10507156&rfr_iscdi=true |