Area-Efficient QC-LDPC Decoding Architecture With Thermometer Code-Based Sorting and Relative Quasi-Cyclic Shifting

The 5G New-Radio (NR) communication standard requires high throughput and low latency, so low-density parity-check (LDPC) codes, which have higher inherent parallelism and lower decoding complexity than turbo codes, were adopted as the main coding method for data channels. In traditional LDPC min-su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2024-06, Vol.71 (6), p.2897-2910
Hauptverfasser: Jang, Boseon, Jang, Hyejung, Kim, Sungho, Choi, Kangjoon, Park, In-Cheol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2910
container_issue 6
container_start_page 2897
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 71
creator Jang, Boseon
Jang, Hyejung
Kim, Sungho
Choi, Kangjoon
Park, In-Cheol
description The 5G New-Radio (NR) communication standard requires high throughput and low latency, so low-density parity-check (LDPC) codes, which have higher inherent parallelism and lower decoding complexity than turbo codes, were adopted as the main coding method for data channels. In traditional LDPC min-sum decoders, the check node unit was realized using a sorting unit based on the min-tree structure. However, this structure resulted in high hardware complexity and long latency. To address this issue, we propose a new sorting method based on the thermometer code-based number system. Additionally, we introduce a new LDPC decoding architecture that reduces the number of QSN stages from two to one, significantly lowering the shifting logic complexity needed to support different lifting sizes. This is achieved by using relative shift amounts instead of absolute shift amounts specified in the parity check matrix. The proposed decoder implemented using a partially parallel structure in a 65nm CMOS technology satisfies the various operation modes and the throughput requirements of the 5G NR standard, and boasts a higher normalized throughput than state-of-the-art LDPC decoders.
doi_str_mv 10.1109/TCSI.2024.3389040
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10507156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10507156</ieee_id><sourcerecordid>3061458566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-da122ec3586d5146befaccafbb4c5d863ff4f677560c62449504951fc3aa7e943</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhoMoWKs_QPCw4Hnrfic51rRqoaC1FY9hu5k1W9qm7m6E_nsT6sHD8M7heWfgSZJbSkaUkvxhVSxnI0aYGHGe5USQs2RApcwwyYg673eR44yz7DK5CmFDCMsJp4MkjD1oPLXWGQf7iBYFnk_eCjQB01Ru_4XG3tQugomtB_TpYo1WNfhds4MIHhVNBfhRB6jQsvGxL-h9hd5hq6P7AbRodXC4OJqtM2hZO9sj18mF1dsAN385TD6epqviBc9fn2fFeI4NEyriSlPGwHCZqUpSodZgtTHartfCyCpT3FphVZpKRYxiQuSSdEOt4VqnkAs-TO5Pdw---W4hxHLTtH7fvSw5UVTITCrVUfREGd-E4MGWB-922h9LSsrebdm7LXu35Z_brnN36jgA-MdLklKp-C8yTnWG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061458566</pqid></control><display><type>article</type><title>Area-Efficient QC-LDPC Decoding Architecture With Thermometer Code-Based Sorting and Relative Quasi-Cyclic Shifting</title><source>IEEE Electronic Library (IEL)</source><creator>Jang, Boseon ; Jang, Hyejung ; Kim, Sungho ; Choi, Kangjoon ; Park, In-Cheol</creator><creatorcontrib>Jang, Boseon ; Jang, Hyejung ; Kim, Sungho ; Choi, Kangjoon ; Park, In-Cheol</creatorcontrib><description>The 5G New-Radio (NR) communication standard requires high throughput and low latency, so low-density parity-check (LDPC) codes, which have higher inherent parallelism and lower decoding complexity than turbo codes, were adopted as the main coding method for data channels. In traditional LDPC min-sum decoders, the check node unit was realized using a sorting unit based on the min-tree structure. However, this structure resulted in high hardware complexity and long latency. To address this issue, we propose a new sorting method based on the thermometer code-based number system. Additionally, we introduce a new LDPC decoding architecture that reduces the number of QSN stages from two to one, significantly lowering the shifting logic complexity needed to support different lifting sizes. This is achieved by using relative shift amounts instead of absolute shift amounts specified in the parity check matrix. The proposed decoder implemented using a partially parallel structure in a 65nm CMOS technology satisfies the various operation modes and the throughput requirements of the 5G NR standard, and boasts a higher normalized throughput than state-of-the-art LDPC decoders.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2024.3389040</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>5G mobile communication ; 5G new-radio standard ; area-efficient ; Codes ; Complexity ; Complexity theory ; Decoders ; Decoding ; Error correcting codes ; Hardware ; Low-density parity-check codes ; normalized min-sum algorithm ; Number systems ; Parity ; Parity check codes ; Phase change materials ; quasi-cyclic LDPC decoder ; thermometer code ; Thermometers ; Thermometry ; Throughput ; Turbo codes ; VLSI hardware implementation</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2024-06, Vol.71 (6), p.2897-2910</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-da122ec3586d5146befaccafbb4c5d863ff4f677560c62449504951fc3aa7e943</cites><orcidid>0009-0001-0325-9072 ; 0000-0002-1128-0429 ; 0009-0004-4137-7688 ; 0009-0008-3916-720X ; 0000-0003-3524-2838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10507156$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10507156$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jang, Boseon</creatorcontrib><creatorcontrib>Jang, Hyejung</creatorcontrib><creatorcontrib>Kim, Sungho</creatorcontrib><creatorcontrib>Choi, Kangjoon</creatorcontrib><creatorcontrib>Park, In-Cheol</creatorcontrib><title>Area-Efficient QC-LDPC Decoding Architecture With Thermometer Code-Based Sorting and Relative Quasi-Cyclic Shifting</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>The 5G New-Radio (NR) communication standard requires high throughput and low latency, so low-density parity-check (LDPC) codes, which have higher inherent parallelism and lower decoding complexity than turbo codes, were adopted as the main coding method for data channels. In traditional LDPC min-sum decoders, the check node unit was realized using a sorting unit based on the min-tree structure. However, this structure resulted in high hardware complexity and long latency. To address this issue, we propose a new sorting method based on the thermometer code-based number system. Additionally, we introduce a new LDPC decoding architecture that reduces the number of QSN stages from two to one, significantly lowering the shifting logic complexity needed to support different lifting sizes. This is achieved by using relative shift amounts instead of absolute shift amounts specified in the parity check matrix. The proposed decoder implemented using a partially parallel structure in a 65nm CMOS technology satisfies the various operation modes and the throughput requirements of the 5G NR standard, and boasts a higher normalized throughput than state-of-the-art LDPC decoders.</description><subject>5G mobile communication</subject><subject>5G new-radio standard</subject><subject>area-efficient</subject><subject>Codes</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Decoders</subject><subject>Decoding</subject><subject>Error correcting codes</subject><subject>Hardware</subject><subject>Low-density parity-check codes</subject><subject>normalized min-sum algorithm</subject><subject>Number systems</subject><subject>Parity</subject><subject>Parity check codes</subject><subject>Phase change materials</subject><subject>quasi-cyclic LDPC decoder</subject><subject>thermometer code</subject><subject>Thermometers</subject><subject>Thermometry</subject><subject>Throughput</subject><subject>Turbo codes</subject><subject>VLSI hardware implementation</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhoMoWKs_QPCw4Hnrfic51rRqoaC1FY9hu5k1W9qm7m6E_nsT6sHD8M7heWfgSZJbSkaUkvxhVSxnI0aYGHGe5USQs2RApcwwyYg673eR44yz7DK5CmFDCMsJp4MkjD1oPLXWGQf7iBYFnk_eCjQB01Ru_4XG3tQugomtB_TpYo1WNfhds4MIHhVNBfhRB6jQsvGxL-h9hd5hq6P7AbRodXC4OJqtM2hZO9sj18mF1dsAN385TD6epqviBc9fn2fFeI4NEyriSlPGwHCZqUpSodZgtTHartfCyCpT3FphVZpKRYxiQuSSdEOt4VqnkAs-TO5Pdw---W4hxHLTtH7fvSw5UVTITCrVUfREGd-E4MGWB-922h9LSsrebdm7LXu35Z_brnN36jgA-MdLklKp-C8yTnWG</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Jang, Boseon</creator><creator>Jang, Hyejung</creator><creator>Kim, Sungho</creator><creator>Choi, Kangjoon</creator><creator>Park, In-Cheol</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0001-0325-9072</orcidid><orcidid>https://orcid.org/0000-0002-1128-0429</orcidid><orcidid>https://orcid.org/0009-0004-4137-7688</orcidid><orcidid>https://orcid.org/0009-0008-3916-720X</orcidid><orcidid>https://orcid.org/0000-0003-3524-2838</orcidid></search><sort><creationdate>20240601</creationdate><title>Area-Efficient QC-LDPC Decoding Architecture With Thermometer Code-Based Sorting and Relative Quasi-Cyclic Shifting</title><author>Jang, Boseon ; Jang, Hyejung ; Kim, Sungho ; Choi, Kangjoon ; Park, In-Cheol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-da122ec3586d5146befaccafbb4c5d863ff4f677560c62449504951fc3aa7e943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>5G mobile communication</topic><topic>5G new-radio standard</topic><topic>area-efficient</topic><topic>Codes</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Decoders</topic><topic>Decoding</topic><topic>Error correcting codes</topic><topic>Hardware</topic><topic>Low-density parity-check codes</topic><topic>normalized min-sum algorithm</topic><topic>Number systems</topic><topic>Parity</topic><topic>Parity check codes</topic><topic>Phase change materials</topic><topic>quasi-cyclic LDPC decoder</topic><topic>thermometer code</topic><topic>Thermometers</topic><topic>Thermometry</topic><topic>Throughput</topic><topic>Turbo codes</topic><topic>VLSI hardware implementation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Boseon</creatorcontrib><creatorcontrib>Jang, Hyejung</creatorcontrib><creatorcontrib>Kim, Sungho</creatorcontrib><creatorcontrib>Choi, Kangjoon</creatorcontrib><creatorcontrib>Park, In-Cheol</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jang, Boseon</au><au>Jang, Hyejung</au><au>Kim, Sungho</au><au>Choi, Kangjoon</au><au>Park, In-Cheol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Area-Efficient QC-LDPC Decoding Architecture With Thermometer Code-Based Sorting and Relative Quasi-Cyclic Shifting</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>71</volume><issue>6</issue><spage>2897</spage><epage>2910</epage><pages>2897-2910</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>The 5G New-Radio (NR) communication standard requires high throughput and low latency, so low-density parity-check (LDPC) codes, which have higher inherent parallelism and lower decoding complexity than turbo codes, were adopted as the main coding method for data channels. In traditional LDPC min-sum decoders, the check node unit was realized using a sorting unit based on the min-tree structure. However, this structure resulted in high hardware complexity and long latency. To address this issue, we propose a new sorting method based on the thermometer code-based number system. Additionally, we introduce a new LDPC decoding architecture that reduces the number of QSN stages from two to one, significantly lowering the shifting logic complexity needed to support different lifting sizes. This is achieved by using relative shift amounts instead of absolute shift amounts specified in the parity check matrix. The proposed decoder implemented using a partially parallel structure in a 65nm CMOS technology satisfies the various operation modes and the throughput requirements of the 5G NR standard, and boasts a higher normalized throughput than state-of-the-art LDPC decoders.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2024.3389040</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0001-0325-9072</orcidid><orcidid>https://orcid.org/0000-0002-1128-0429</orcidid><orcidid>https://orcid.org/0009-0004-4137-7688</orcidid><orcidid>https://orcid.org/0009-0008-3916-720X</orcidid><orcidid>https://orcid.org/0000-0003-3524-2838</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2024-06, Vol.71 (6), p.2897-2910
issn 1549-8328
1558-0806
language eng
recordid cdi_ieee_primary_10507156
source IEEE Electronic Library (IEL)
subjects 5G mobile communication
5G new-radio standard
area-efficient
Codes
Complexity
Complexity theory
Decoders
Decoding
Error correcting codes
Hardware
Low-density parity-check codes
normalized min-sum algorithm
Number systems
Parity
Parity check codes
Phase change materials
quasi-cyclic LDPC decoder
thermometer code
Thermometers
Thermometry
Throughput
Turbo codes
VLSI hardware implementation
title Area-Efficient QC-LDPC Decoding Architecture With Thermometer Code-Based Sorting and Relative Quasi-Cyclic Shifting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A20%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Area-Efficient%20QC-LDPC%20Decoding%20Architecture%20With%20Thermometer%20Code-Based%20Sorting%20and%20Relative%20Quasi-Cyclic%20Shifting&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Jang,%20Boseon&rft.date=2024-06-01&rft.volume=71&rft.issue=6&rft.spage=2897&rft.epage=2910&rft.pages=2897-2910&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2024.3389040&rft_dat=%3Cproquest_RIE%3E3061458566%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3061458566&rft_id=info:pmid/&rft_ieee_id=10507156&rfr_iscdi=true