Centaur: Robust Multimodal Fusion for Human Activity Recognition

The proliferation of Internet of Things (IoT) and mobile devices equipped with heterogeneous sensors has enabled new applications that rely on the fusion of time series emitted by sensors with different modalities. While there are promising neural network architectures for multimodal fusion, their p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024, Vol.24 (11), p.18578-18591
Hauptverfasser: Xaviar, Sanju, Yang, Xin, Ardakanian, Omid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18591
container_issue 11
container_start_page 18578
container_title IEEE sensors journal
container_volume 24
creator Xaviar, Sanju
Yang, Xin
Ardakanian, Omid
description The proliferation of Internet of Things (IoT) and mobile devices equipped with heterogeneous sensors has enabled new applications that rely on the fusion of time series emitted by sensors with different modalities. While there are promising neural network architectures for multimodal fusion, their performance falls apart quickly in the presence of consecutive missing data and noise across multiple modalities/sensors, the issues that are prevalent in real-world settings. We propose Centaur, a multimodal fusion model for human activity recognition (HAR) that is robust to these data quality issues. Centaur combines a data cleaning module, which is a denoising autoencoder (DAE) with convolutional layers, and a multimodal fusion module, which is a deep convolutional neural network with the self-attention (SA) mechanism to capture cross-sensor (CS) correlation. We train Centaur using a stochastic data corruption scheme and evaluate it on five datasets that contain data generated by multiple inertial measurement units (IMUs). We show that Centaur's data cleaning module outperforms two state-of-the-art autoencoder-based architectures, and its multimodal fusion module outperforms four strong baselines. Compared to two robust fusion architectures from the related work, Centaur is more robust especially to consecutive missing data that occur in multiple sensor channels, achieving 10.89%-16.56% higher accuracy in the HAR task.
doi_str_mv 10.1109/JSEN.2024.3388893
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10506095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10506095</ieee_id><sourcerecordid>3064706070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-52e97a1e1b8c967ffc9f549b63c303bc4b0f47488975532904fff3371c87b9593</originalsourceid><addsrcrecordid>eNpNkM1KAzEUhYMoWKsPILgYcD01mSSTxJWltFapClXBXZiJiaS0k5qfQt_eDO3C1b1wzzn38AFwjeAIISjunt-nr6MKVmSEMedc4BMwQJTyEjHCT_sdw5Jg9nUOLkJYQYgEo2wAHia6i03y98XStSnE4iWto92472ZdzFKwriuM88U8bZquGKtodzbui6VW7qezMZ8vwZlp1kFfHecQfM6mH5N5uXh7fJqMF6WqSB1LWmnBGqRRy5WomTFKGEpEW2OFIW4VaaEhuSrPtSiuBCTGGIwZUpy1ggo8BLeH3K13v0mHKFcu-S6_lBjWhMEaMphV6KBS3oXgtZFbbzeN30sEZQ9K9qBkD0oeQWXPzcFjtdb_9DRHCor_ANlgY1k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064706070</pqid></control><display><type>article</type><title>Centaur: Robust Multimodal Fusion for Human Activity Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Xaviar, Sanju ; Yang, Xin ; Ardakanian, Omid</creator><creatorcontrib>Xaviar, Sanju ; Yang, Xin ; Ardakanian, Omid</creatorcontrib><description>The proliferation of Internet of Things (IoT) and mobile devices equipped with heterogeneous sensors has enabled new applications that rely on the fusion of time series emitted by sensors with different modalities. While there are promising neural network architectures for multimodal fusion, their performance falls apart quickly in the presence of consecutive missing data and noise across multiple modalities/sensors, the issues that are prevalent in real-world settings. We propose Centaur, a multimodal fusion model for human activity recognition (HAR) that is robust to these data quality issues. Centaur combines a data cleaning module, which is a denoising autoencoder (DAE) with convolutional layers, and a multimodal fusion module, which is a deep convolutional neural network with the self-attention (SA) mechanism to capture cross-sensor (CS) correlation. We train Centaur using a stochastic data corruption scheme and evaluate it on five datasets that contain data generated by multiple inertial measurement units (IMUs). We show that Centaur's data cleaning module outperforms two state-of-the-art autoencoder-based architectures, and its multimodal fusion module outperforms four strong baselines. Compared to two robust fusion architectures from the related work, Centaur is more robust especially to consecutive missing data that occur in multiple sensor channels, achieving 10.89%-16.56% higher accuracy in the HAR task.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3388893</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Brain modeling ; Cleaning ; Data models ; Human activity recognition ; Human activity recognition (HAR) ; Inertial platforms ; Internet of Things ; Missing data ; Modules ; multimodal fusion ; Neural networks ; Noise ; Robustness ; sensor faults ; Sensor fusion ; Sensors ; Wearable sensors</subject><ispartof>IEEE sensors journal, 2024, Vol.24 (11), p.18578-18591</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6711-5502 ; 0009-0009-7475-567X ; 0000-0002-7861-0007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10506095$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4023,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10506095$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xaviar, Sanju</creatorcontrib><creatorcontrib>Yang, Xin</creatorcontrib><creatorcontrib>Ardakanian, Omid</creatorcontrib><title>Centaur: Robust Multimodal Fusion for Human Activity Recognition</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The proliferation of Internet of Things (IoT) and mobile devices equipped with heterogeneous sensors has enabled new applications that rely on the fusion of time series emitted by sensors with different modalities. While there are promising neural network architectures for multimodal fusion, their performance falls apart quickly in the presence of consecutive missing data and noise across multiple modalities/sensors, the issues that are prevalent in real-world settings. We propose Centaur, a multimodal fusion model for human activity recognition (HAR) that is robust to these data quality issues. Centaur combines a data cleaning module, which is a denoising autoencoder (DAE) with convolutional layers, and a multimodal fusion module, which is a deep convolutional neural network with the self-attention (SA) mechanism to capture cross-sensor (CS) correlation. We train Centaur using a stochastic data corruption scheme and evaluate it on five datasets that contain data generated by multiple inertial measurement units (IMUs). We show that Centaur's data cleaning module outperforms two state-of-the-art autoencoder-based architectures, and its multimodal fusion module outperforms four strong baselines. Compared to two robust fusion architectures from the related work, Centaur is more robust especially to consecutive missing data that occur in multiple sensor channels, achieving 10.89%-16.56% higher accuracy in the HAR task.</description><subject>Artificial neural networks</subject><subject>Brain modeling</subject><subject>Cleaning</subject><subject>Data models</subject><subject>Human activity recognition</subject><subject>Human activity recognition (HAR)</subject><subject>Inertial platforms</subject><subject>Internet of Things</subject><subject>Missing data</subject><subject>Modules</subject><subject>multimodal fusion</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Robustness</subject><subject>sensor faults</subject><subject>Sensor fusion</subject><subject>Sensors</subject><subject>Wearable sensors</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1KAzEUhYMoWKsPILgYcD01mSSTxJWltFapClXBXZiJiaS0k5qfQt_eDO3C1b1wzzn38AFwjeAIISjunt-nr6MKVmSEMedc4BMwQJTyEjHCT_sdw5Jg9nUOLkJYQYgEo2wAHia6i03y98XStSnE4iWto92472ZdzFKwriuM88U8bZquGKtodzbui6VW7qezMZ8vwZlp1kFfHecQfM6mH5N5uXh7fJqMF6WqSB1LWmnBGqRRy5WomTFKGEpEW2OFIW4VaaEhuSrPtSiuBCTGGIwZUpy1ggo8BLeH3K13v0mHKFcu-S6_lBjWhMEaMphV6KBS3oXgtZFbbzeN30sEZQ9K9qBkD0oeQWXPzcFjtdb_9DRHCor_ANlgY1k</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Xaviar, Sanju</creator><creator>Yang, Xin</creator><creator>Ardakanian, Omid</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6711-5502</orcidid><orcidid>https://orcid.org/0009-0009-7475-567X</orcidid><orcidid>https://orcid.org/0000-0002-7861-0007</orcidid></search><sort><creationdate>2024</creationdate><title>Centaur: Robust Multimodal Fusion for Human Activity Recognition</title><author>Xaviar, Sanju ; Yang, Xin ; Ardakanian, Omid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-52e97a1e1b8c967ffc9f549b63c303bc4b0f47488975532904fff3371c87b9593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Brain modeling</topic><topic>Cleaning</topic><topic>Data models</topic><topic>Human activity recognition</topic><topic>Human activity recognition (HAR)</topic><topic>Inertial platforms</topic><topic>Internet of Things</topic><topic>Missing data</topic><topic>Modules</topic><topic>multimodal fusion</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Robustness</topic><topic>sensor faults</topic><topic>Sensor fusion</topic><topic>Sensors</topic><topic>Wearable sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xaviar, Sanju</creatorcontrib><creatorcontrib>Yang, Xin</creatorcontrib><creatorcontrib>Ardakanian, Omid</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xaviar, Sanju</au><au>Yang, Xin</au><au>Ardakanian, Omid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Centaur: Robust Multimodal Fusion for Human Activity Recognition</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024</date><risdate>2024</risdate><volume>24</volume><issue>11</issue><spage>18578</spage><epage>18591</epage><pages>18578-18591</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The proliferation of Internet of Things (IoT) and mobile devices equipped with heterogeneous sensors has enabled new applications that rely on the fusion of time series emitted by sensors with different modalities. While there are promising neural network architectures for multimodal fusion, their performance falls apart quickly in the presence of consecutive missing data and noise across multiple modalities/sensors, the issues that are prevalent in real-world settings. We propose Centaur, a multimodal fusion model for human activity recognition (HAR) that is robust to these data quality issues. Centaur combines a data cleaning module, which is a denoising autoencoder (DAE) with convolutional layers, and a multimodal fusion module, which is a deep convolutional neural network with the self-attention (SA) mechanism to capture cross-sensor (CS) correlation. We train Centaur using a stochastic data corruption scheme and evaluate it on five datasets that contain data generated by multiple inertial measurement units (IMUs). We show that Centaur's data cleaning module outperforms two state-of-the-art autoencoder-based architectures, and its multimodal fusion module outperforms four strong baselines. Compared to two robust fusion architectures from the related work, Centaur is more robust especially to consecutive missing data that occur in multiple sensor channels, achieving 10.89%-16.56% higher accuracy in the HAR task.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3388893</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6711-5502</orcidid><orcidid>https://orcid.org/0009-0009-7475-567X</orcidid><orcidid>https://orcid.org/0000-0002-7861-0007</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024, Vol.24 (11), p.18578-18591
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_10506095
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Brain modeling
Cleaning
Data models
Human activity recognition
Human activity recognition (HAR)
Inertial platforms
Internet of Things
Missing data
Modules
multimodal fusion
Neural networks
Noise
Robustness
sensor faults
Sensor fusion
Sensors
Wearable sensors
title Centaur: Robust Multimodal Fusion for Human Activity Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A14%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Centaur:%20Robust%20Multimodal%20Fusion%20for%20Human%20Activity%20Recognition&rft.jtitle=IEEE%20sensors%20journal&rft.au=Xaviar,%20Sanju&rft.date=2024&rft.volume=24&rft.issue=11&rft.spage=18578&rft.epage=18591&rft.pages=18578-18591&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3388893&rft_dat=%3Cproquest_RIE%3E3064706070%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064706070&rft_id=info:pmid/&rft_ieee_id=10506095&rfr_iscdi=true