State of charge estimation for commercial Li-ion battery based on simultaneously strain and temperature monitoring over optical fiber sensors
The combination of artificial intelligence methods and multisensory is crucial for future intelligent battery management systems (BMS). Among multi-sensing technologies in batteries, simultaneously monitoring the strain and temperature is essential to determine the batteries' safety and state o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2024-01, Vol.73, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 73 |
creator | Xia, Xudong Wu, Wen Li, Zhencheng Han, Xile Xue, Xiaobin Xiao, Gaozhi Guo, Tuan |
description | The combination of artificial intelligence methods and multisensory is crucial for future intelligent battery management systems (BMS). Among multi-sensing technologies in batteries, simultaneously monitoring the strain and temperature is essential to determine the batteries' safety and state of charge (SoC). However, the combination still faces a few challenges, such as obtaining multi-sensing parameters with only one simple and easy-to-fabricate sensor, and how to use artificial intelligence and measurement parameters such as strain and temperature for effective modeling. To address these, we propose a novel sensing technique based on a compact dual-diameter fiber Bragg gratings (FBGs) sensor capable of being attached to the surface of a working lithium-ion pouch cell to simultaneously monitor the battery's surface strain and temperature. Then, based on the collected data of strain and temperature, we have constructed deep artificial neural network (DNN) models with different inputs to realize accurate battery SoC estimation with high resistance to electromagnetic interference. Based on our DNN models, the experimental results show that strain and temperature information can be used as supplementary parameters for improved SoC estimation (accuracy increased from 97.40% to 99.94%). Meanwhile, we also find that by just using the strain and temperature information obtained by the optical fiber sensor, the SoC estimation can be achieved without the voltage and current inputs. This new optical fiber measurement tool will provide crucial additional capabilities to battery sensing methods, especially for the future intelligent BMS. |
doi_str_mv | 10.1109/TIM.2024.3390696 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10505040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10505040</ieee_id><sourcerecordid>3049489860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-81a3d375d9849f9eba805fcab881499805df36a16f8252a5c83df730f44e56f43</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3Dx4Cnrcmm49NjlL8KFQ8WM9LdndSU7qbmmSF_gj_syntQeYwzPC-7zAPQreUzCgl-mG1eJuVpOQzxjSRWp6hCRWiKrSU5TmaEEJVobmQl-gqxg0hpJK8mqDfj2QSYG9x-2XCGjDE5HqTnB-w9QG3vu8htM5s8dIVh21jUoKwzz1Ch_Miun7cJjOAH-N2j2MKxg3YDB1O0O8gmDQGwL0fXPLBDWvsfyBgv0uuzanWNXmKMEQf4jW6sGYb4ebUp-jz-Wk1fy2W7y-L-eOyaEsuUqGoYR2rRKcV11ZDYxQRtjWNUpRrnYfOMmmotKoUpRGtYp2tGLGcg5CWsym6P-bugv8e88v1xo9hyCdrRrjmSitJsoocVW3wMQaw9S5kNmFfU1IfoNcZen2AXp-gZ8vd0eIA4J9c5OKE_QGwWoDk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049489860</pqid></control><display><type>article</type><title>State of charge estimation for commercial Li-ion battery based on simultaneously strain and temperature monitoring over optical fiber sensors</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Xia, Xudong ; Wu, Wen ; Li, Zhencheng ; Han, Xile ; Xue, Xiaobin ; Xiao, Gaozhi ; Guo, Tuan</creator><creatorcontrib>Xia, Xudong ; Wu, Wen ; Li, Zhencheng ; Han, Xile ; Xue, Xiaobin ; Xiao, Gaozhi ; Guo, Tuan</creatorcontrib><description>The combination of artificial intelligence methods and multisensory is crucial for future intelligent battery management systems (BMS). Among multi-sensing technologies in batteries, simultaneously monitoring the strain and temperature is essential to determine the batteries' safety and state of charge (SoC). However, the combination still faces a few challenges, such as obtaining multi-sensing parameters with only one simple and easy-to-fabricate sensor, and how to use artificial intelligence and measurement parameters such as strain and temperature for effective modeling. To address these, we propose a novel sensing technique based on a compact dual-diameter fiber Bragg gratings (FBGs) sensor capable of being attached to the surface of a working lithium-ion pouch cell to simultaneously monitor the battery's surface strain and temperature. Then, based on the collected data of strain and temperature, we have constructed deep artificial neural network (DNN) models with different inputs to realize accurate battery SoC estimation with high resistance to electromagnetic interference. Based on our DNN models, the experimental results show that strain and temperature information can be used as supplementary parameters for improved SoC estimation (accuracy increased from 97.40% to 99.94%). Meanwhile, we also find that by just using the strain and temperature information obtained by the optical fiber sensor, the SoC estimation can be achieved without the voltage and current inputs. This new optical fiber measurement tool will provide crucial additional capabilities to battery sensing methods, especially for the future intelligent BMS.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3390696</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Artificial neural networks ; Batteries ; Battery state of charge estimation ; Bragg gratings ; Deep neural network ; Diameters ; Dual-diameter fiber Bragg gratings sensors ; Electric charge ; Electromagnetic interference ; Estimation ; Fiber gratings ; High resistance ; Lithium-ion batteries ; Management systems ; Mathematical models ; Monitoring ; Optical fiber sensors ; Optical fibers ; Parameters ; Power management ; Rechargeable batteries ; Sensors ; State of charge ; Strain ; Strain and temperature monitoring ; Temperature measurement ; Temperature sensors</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024-01, Vol.73, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-81a3d375d9849f9eba805fcab881499805df36a16f8252a5c83df730f44e56f43</cites><orcidid>0000-0001-6189-1335 ; 0009-0008-4059-4532 ; 0000-0001-7717-1818 ; 0009-0009-1560-5030 ; 0000-0001-5392-8601 ; 0009-0004-7476-0632 ; 0000-0003-0569-9212</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10505040$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10505040$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xia, Xudong</creatorcontrib><creatorcontrib>Wu, Wen</creatorcontrib><creatorcontrib>Li, Zhencheng</creatorcontrib><creatorcontrib>Han, Xile</creatorcontrib><creatorcontrib>Xue, Xiaobin</creatorcontrib><creatorcontrib>Xiao, Gaozhi</creatorcontrib><creatorcontrib>Guo, Tuan</creatorcontrib><title>State of charge estimation for commercial Li-ion battery based on simultaneously strain and temperature monitoring over optical fiber sensors</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>The combination of artificial intelligence methods and multisensory is crucial for future intelligent battery management systems (BMS). Among multi-sensing technologies in batteries, simultaneously monitoring the strain and temperature is essential to determine the batteries' safety and state of charge (SoC). However, the combination still faces a few challenges, such as obtaining multi-sensing parameters with only one simple and easy-to-fabricate sensor, and how to use artificial intelligence and measurement parameters such as strain and temperature for effective modeling. To address these, we propose a novel sensing technique based on a compact dual-diameter fiber Bragg gratings (FBGs) sensor capable of being attached to the surface of a working lithium-ion pouch cell to simultaneously monitor the battery's surface strain and temperature. Then, based on the collected data of strain and temperature, we have constructed deep artificial neural network (DNN) models with different inputs to realize accurate battery SoC estimation with high resistance to electromagnetic interference. Based on our DNN models, the experimental results show that strain and temperature information can be used as supplementary parameters for improved SoC estimation (accuracy increased from 97.40% to 99.94%). Meanwhile, we also find that by just using the strain and temperature information obtained by the optical fiber sensor, the SoC estimation can be achieved without the voltage and current inputs. This new optical fiber measurement tool will provide crucial additional capabilities to battery sensing methods, especially for the future intelligent BMS.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Batteries</subject><subject>Battery state of charge estimation</subject><subject>Bragg gratings</subject><subject>Deep neural network</subject><subject>Diameters</subject><subject>Dual-diameter fiber Bragg gratings sensors</subject><subject>Electric charge</subject><subject>Electromagnetic interference</subject><subject>Estimation</subject><subject>Fiber gratings</subject><subject>High resistance</subject><subject>Lithium-ion batteries</subject><subject>Management systems</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>Optical fiber sensors</subject><subject>Optical fibers</subject><subject>Parameters</subject><subject>Power management</subject><subject>Rechargeable batteries</subject><subject>Sensors</subject><subject>State of charge</subject><subject>Strain</subject><subject>Strain and temperature monitoring</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKt3Dx4Cnrcmm49NjlL8KFQ8WM9LdndSU7qbmmSF_gj_syntQeYwzPC-7zAPQreUzCgl-mG1eJuVpOQzxjSRWp6hCRWiKrSU5TmaEEJVobmQl-gqxg0hpJK8mqDfj2QSYG9x-2XCGjDE5HqTnB-w9QG3vu8htM5s8dIVh21jUoKwzz1Ch_Miun7cJjOAH-N2j2MKxg3YDB1O0O8gmDQGwL0fXPLBDWvsfyBgv0uuzanWNXmKMEQf4jW6sGYb4ebUp-jz-Wk1fy2W7y-L-eOyaEsuUqGoYR2rRKcV11ZDYxQRtjWNUpRrnYfOMmmotKoUpRGtYp2tGLGcg5CWsym6P-bugv8e88v1xo9hyCdrRrjmSitJsoocVW3wMQaw9S5kNmFfU1IfoNcZen2AXp-gZ8vd0eIA4J9c5OKE_QGwWoDk</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Xia, Xudong</creator><creator>Wu, Wen</creator><creator>Li, Zhencheng</creator><creator>Han, Xile</creator><creator>Xue, Xiaobin</creator><creator>Xiao, Gaozhi</creator><creator>Guo, Tuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6189-1335</orcidid><orcidid>https://orcid.org/0009-0008-4059-4532</orcidid><orcidid>https://orcid.org/0000-0001-7717-1818</orcidid><orcidid>https://orcid.org/0009-0009-1560-5030</orcidid><orcidid>https://orcid.org/0000-0001-5392-8601</orcidid><orcidid>https://orcid.org/0009-0004-7476-0632</orcidid><orcidid>https://orcid.org/0000-0003-0569-9212</orcidid></search><sort><creationdate>20240101</creationdate><title>State of charge estimation for commercial Li-ion battery based on simultaneously strain and temperature monitoring over optical fiber sensors</title><author>Xia, Xudong ; Wu, Wen ; Li, Zhencheng ; Han, Xile ; Xue, Xiaobin ; Xiao, Gaozhi ; Guo, Tuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-81a3d375d9849f9eba805fcab881499805df36a16f8252a5c83df730f44e56f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Batteries</topic><topic>Battery state of charge estimation</topic><topic>Bragg gratings</topic><topic>Deep neural network</topic><topic>Diameters</topic><topic>Dual-diameter fiber Bragg gratings sensors</topic><topic>Electric charge</topic><topic>Electromagnetic interference</topic><topic>Estimation</topic><topic>Fiber gratings</topic><topic>High resistance</topic><topic>Lithium-ion batteries</topic><topic>Management systems</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>Optical fiber sensors</topic><topic>Optical fibers</topic><topic>Parameters</topic><topic>Power management</topic><topic>Rechargeable batteries</topic><topic>Sensors</topic><topic>State of charge</topic><topic>Strain</topic><topic>Strain and temperature monitoring</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Xudong</creatorcontrib><creatorcontrib>Wu, Wen</creatorcontrib><creatorcontrib>Li, Zhencheng</creatorcontrib><creatorcontrib>Han, Xile</creatorcontrib><creatorcontrib>Xue, Xiaobin</creatorcontrib><creatorcontrib>Xiao, Gaozhi</creatorcontrib><creatorcontrib>Guo, Tuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xia, Xudong</au><au>Wu, Wen</au><au>Li, Zhencheng</au><au>Han, Xile</au><au>Xue, Xiaobin</au><au>Xiao, Gaozhi</au><au>Guo, Tuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>State of charge estimation for commercial Li-ion battery based on simultaneously strain and temperature monitoring over optical fiber sensors</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>The combination of artificial intelligence methods and multisensory is crucial for future intelligent battery management systems (BMS). Among multi-sensing technologies in batteries, simultaneously monitoring the strain and temperature is essential to determine the batteries' safety and state of charge (SoC). However, the combination still faces a few challenges, such as obtaining multi-sensing parameters with only one simple and easy-to-fabricate sensor, and how to use artificial intelligence and measurement parameters such as strain and temperature for effective modeling. To address these, we propose a novel sensing technique based on a compact dual-diameter fiber Bragg gratings (FBGs) sensor capable of being attached to the surface of a working lithium-ion pouch cell to simultaneously monitor the battery's surface strain and temperature. Then, based on the collected data of strain and temperature, we have constructed deep artificial neural network (DNN) models with different inputs to realize accurate battery SoC estimation with high resistance to electromagnetic interference. Based on our DNN models, the experimental results show that strain and temperature information can be used as supplementary parameters for improved SoC estimation (accuracy increased from 97.40% to 99.94%). Meanwhile, we also find that by just using the strain and temperature information obtained by the optical fiber sensor, the SoC estimation can be achieved without the voltage and current inputs. This new optical fiber measurement tool will provide crucial additional capabilities to battery sensing methods, especially for the future intelligent BMS.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2024.3390696</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6189-1335</orcidid><orcidid>https://orcid.org/0009-0008-4059-4532</orcidid><orcidid>https://orcid.org/0000-0001-7717-1818</orcidid><orcidid>https://orcid.org/0009-0009-1560-5030</orcidid><orcidid>https://orcid.org/0000-0001-5392-8601</orcidid><orcidid>https://orcid.org/0009-0004-7476-0632</orcidid><orcidid>https://orcid.org/0000-0003-0569-9212</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2024-01, Vol.73, p.1-1 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_10505040 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Artificial intelligence Artificial neural networks Batteries Battery state of charge estimation Bragg gratings Deep neural network Diameters Dual-diameter fiber Bragg gratings sensors Electric charge Electromagnetic interference Estimation Fiber gratings High resistance Lithium-ion batteries Management systems Mathematical models Monitoring Optical fiber sensors Optical fibers Parameters Power management Rechargeable batteries Sensors State of charge Strain Strain and temperature monitoring Temperature measurement Temperature sensors |
title | State of charge estimation for commercial Li-ion battery based on simultaneously strain and temperature monitoring over optical fiber sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=State%20of%20charge%20estimation%20for%20commercial%20Li-ion%20battery%20based%20on%20simultaneously%20strain%20and%20temperature%20monitoring%20over%20optical%20fiber%20sensors&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Xia,%20Xudong&rft.date=2024-01-01&rft.volume=73&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3390696&rft_dat=%3Cproquest_RIE%3E3049489860%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049489860&rft_id=info:pmid/&rft_ieee_id=10505040&rfr_iscdi=true |