State of charge estimation for commercial Li-ion battery based on simultaneously strain and temperature monitoring over optical fiber sensors

The combination of artificial intelligence methods and multisensory is crucial for future intelligent battery management systems (BMS). Among multi-sensing technologies in batteries, simultaneously monitoring the strain and temperature is essential to determine the batteries' safety and state o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2024-01, Vol.73, p.1-1
Hauptverfasser: Xia, Xudong, Wu, Wen, Li, Zhencheng, Han, Xile, Xue, Xiaobin, Xiao, Gaozhi, Guo, Tuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 73
creator Xia, Xudong
Wu, Wen
Li, Zhencheng
Han, Xile
Xue, Xiaobin
Xiao, Gaozhi
Guo, Tuan
description The combination of artificial intelligence methods and multisensory is crucial for future intelligent battery management systems (BMS). Among multi-sensing technologies in batteries, simultaneously monitoring the strain and temperature is essential to determine the batteries' safety and state of charge (SoC). However, the combination still faces a few challenges, such as obtaining multi-sensing parameters with only one simple and easy-to-fabricate sensor, and how to use artificial intelligence and measurement parameters such as strain and temperature for effective modeling. To address these, we propose a novel sensing technique based on a compact dual-diameter fiber Bragg gratings (FBGs) sensor capable of being attached to the surface of a working lithium-ion pouch cell to simultaneously monitor the battery's surface strain and temperature. Then, based on the collected data of strain and temperature, we have constructed deep artificial neural network (DNN) models with different inputs to realize accurate battery SoC estimation with high resistance to electromagnetic interference. Based on our DNN models, the experimental results show that strain and temperature information can be used as supplementary parameters for improved SoC estimation (accuracy increased from 97.40% to 99.94%). Meanwhile, we also find that by just using the strain and temperature information obtained by the optical fiber sensor, the SoC estimation can be achieved without the voltage and current inputs. This new optical fiber measurement tool will provide crucial additional capabilities to battery sensing methods, especially for the future intelligent BMS.
doi_str_mv 10.1109/TIM.2024.3390696
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10505040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10505040</ieee_id><sourcerecordid>3049489860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-81a3d375d9849f9eba805fcab881499805df36a16f8252a5c83df730f44e56f43</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3Dx4Cnrcmm49NjlL8KFQ8WM9LdndSU7qbmmSF_gj_syntQeYwzPC-7zAPQreUzCgl-mG1eJuVpOQzxjSRWp6hCRWiKrSU5TmaEEJVobmQl-gqxg0hpJK8mqDfj2QSYG9x-2XCGjDE5HqTnB-w9QG3vu8htM5s8dIVh21jUoKwzz1Ch_Miun7cJjOAH-N2j2MKxg3YDB1O0O8gmDQGwL0fXPLBDWvsfyBgv0uuzanWNXmKMEQf4jW6sGYb4ebUp-jz-Wk1fy2W7y-L-eOyaEsuUqGoYR2rRKcV11ZDYxQRtjWNUpRrnYfOMmmotKoUpRGtYp2tGLGcg5CWsym6P-bugv8e88v1xo9hyCdrRrjmSitJsoocVW3wMQaw9S5kNmFfU1IfoNcZen2AXp-gZ8vd0eIA4J9c5OKE_QGwWoDk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049489860</pqid></control><display><type>article</type><title>State of charge estimation for commercial Li-ion battery based on simultaneously strain and temperature monitoring over optical fiber sensors</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Xia, Xudong ; Wu, Wen ; Li, Zhencheng ; Han, Xile ; Xue, Xiaobin ; Xiao, Gaozhi ; Guo, Tuan</creator><creatorcontrib>Xia, Xudong ; Wu, Wen ; Li, Zhencheng ; Han, Xile ; Xue, Xiaobin ; Xiao, Gaozhi ; Guo, Tuan</creatorcontrib><description>The combination of artificial intelligence methods and multisensory is crucial for future intelligent battery management systems (BMS). Among multi-sensing technologies in batteries, simultaneously monitoring the strain and temperature is essential to determine the batteries' safety and state of charge (SoC). However, the combination still faces a few challenges, such as obtaining multi-sensing parameters with only one simple and easy-to-fabricate sensor, and how to use artificial intelligence and measurement parameters such as strain and temperature for effective modeling. To address these, we propose a novel sensing technique based on a compact dual-diameter fiber Bragg gratings (FBGs) sensor capable of being attached to the surface of a working lithium-ion pouch cell to simultaneously monitor the battery's surface strain and temperature. Then, based on the collected data of strain and temperature, we have constructed deep artificial neural network (DNN) models with different inputs to realize accurate battery SoC estimation with high resistance to electromagnetic interference. Based on our DNN models, the experimental results show that strain and temperature information can be used as supplementary parameters for improved SoC estimation (accuracy increased from 97.40% to 99.94%). Meanwhile, we also find that by just using the strain and temperature information obtained by the optical fiber sensor, the SoC estimation can be achieved without the voltage and current inputs. This new optical fiber measurement tool will provide crucial additional capabilities to battery sensing methods, especially for the future intelligent BMS.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3390696</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Artificial neural networks ; Batteries ; Battery state of charge estimation ; Bragg gratings ; Deep neural network ; Diameters ; Dual-diameter fiber Bragg gratings sensors ; Electric charge ; Electromagnetic interference ; Estimation ; Fiber gratings ; High resistance ; Lithium-ion batteries ; Management systems ; Mathematical models ; Monitoring ; Optical fiber sensors ; Optical fibers ; Parameters ; Power management ; Rechargeable batteries ; Sensors ; State of charge ; Strain ; Strain and temperature monitoring ; Temperature measurement ; Temperature sensors</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024-01, Vol.73, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-81a3d375d9849f9eba805fcab881499805df36a16f8252a5c83df730f44e56f43</cites><orcidid>0000-0001-6189-1335 ; 0009-0008-4059-4532 ; 0000-0001-7717-1818 ; 0009-0009-1560-5030 ; 0000-0001-5392-8601 ; 0009-0004-7476-0632 ; 0000-0003-0569-9212</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10505040$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10505040$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xia, Xudong</creatorcontrib><creatorcontrib>Wu, Wen</creatorcontrib><creatorcontrib>Li, Zhencheng</creatorcontrib><creatorcontrib>Han, Xile</creatorcontrib><creatorcontrib>Xue, Xiaobin</creatorcontrib><creatorcontrib>Xiao, Gaozhi</creatorcontrib><creatorcontrib>Guo, Tuan</creatorcontrib><title>State of charge estimation for commercial Li-ion battery based on simultaneously strain and temperature monitoring over optical fiber sensors</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>The combination of artificial intelligence methods and multisensory is crucial for future intelligent battery management systems (BMS). Among multi-sensing technologies in batteries, simultaneously monitoring the strain and temperature is essential to determine the batteries' safety and state of charge (SoC). However, the combination still faces a few challenges, such as obtaining multi-sensing parameters with only one simple and easy-to-fabricate sensor, and how to use artificial intelligence and measurement parameters such as strain and temperature for effective modeling. To address these, we propose a novel sensing technique based on a compact dual-diameter fiber Bragg gratings (FBGs) sensor capable of being attached to the surface of a working lithium-ion pouch cell to simultaneously monitor the battery's surface strain and temperature. Then, based on the collected data of strain and temperature, we have constructed deep artificial neural network (DNN) models with different inputs to realize accurate battery SoC estimation with high resistance to electromagnetic interference. Based on our DNN models, the experimental results show that strain and temperature information can be used as supplementary parameters for improved SoC estimation (accuracy increased from 97.40% to 99.94%). Meanwhile, we also find that by just using the strain and temperature information obtained by the optical fiber sensor, the SoC estimation can be achieved without the voltage and current inputs. This new optical fiber measurement tool will provide crucial additional capabilities to battery sensing methods, especially for the future intelligent BMS.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Batteries</subject><subject>Battery state of charge estimation</subject><subject>Bragg gratings</subject><subject>Deep neural network</subject><subject>Diameters</subject><subject>Dual-diameter fiber Bragg gratings sensors</subject><subject>Electric charge</subject><subject>Electromagnetic interference</subject><subject>Estimation</subject><subject>Fiber gratings</subject><subject>High resistance</subject><subject>Lithium-ion batteries</subject><subject>Management systems</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>Optical fiber sensors</subject><subject>Optical fibers</subject><subject>Parameters</subject><subject>Power management</subject><subject>Rechargeable batteries</subject><subject>Sensors</subject><subject>State of charge</subject><subject>Strain</subject><subject>Strain and temperature monitoring</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKt3Dx4Cnrcmm49NjlL8KFQ8WM9LdndSU7qbmmSF_gj_syntQeYwzPC-7zAPQreUzCgl-mG1eJuVpOQzxjSRWp6hCRWiKrSU5TmaEEJVobmQl-gqxg0hpJK8mqDfj2QSYG9x-2XCGjDE5HqTnB-w9QG3vu8htM5s8dIVh21jUoKwzz1Ch_Miun7cJjOAH-N2j2MKxg3YDB1O0O8gmDQGwL0fXPLBDWvsfyBgv0uuzanWNXmKMEQf4jW6sGYb4ebUp-jz-Wk1fy2W7y-L-eOyaEsuUqGoYR2rRKcV11ZDYxQRtjWNUpRrnYfOMmmotKoUpRGtYp2tGLGcg5CWsym6P-bugv8e88v1xo9hyCdrRrjmSitJsoocVW3wMQaw9S5kNmFfU1IfoNcZen2AXp-gZ8vd0eIA4J9c5OKE_QGwWoDk</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Xia, Xudong</creator><creator>Wu, Wen</creator><creator>Li, Zhencheng</creator><creator>Han, Xile</creator><creator>Xue, Xiaobin</creator><creator>Xiao, Gaozhi</creator><creator>Guo, Tuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6189-1335</orcidid><orcidid>https://orcid.org/0009-0008-4059-4532</orcidid><orcidid>https://orcid.org/0000-0001-7717-1818</orcidid><orcidid>https://orcid.org/0009-0009-1560-5030</orcidid><orcidid>https://orcid.org/0000-0001-5392-8601</orcidid><orcidid>https://orcid.org/0009-0004-7476-0632</orcidid><orcidid>https://orcid.org/0000-0003-0569-9212</orcidid></search><sort><creationdate>20240101</creationdate><title>State of charge estimation for commercial Li-ion battery based on simultaneously strain and temperature monitoring over optical fiber sensors</title><author>Xia, Xudong ; Wu, Wen ; Li, Zhencheng ; Han, Xile ; Xue, Xiaobin ; Xiao, Gaozhi ; Guo, Tuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-81a3d375d9849f9eba805fcab881499805df36a16f8252a5c83df730f44e56f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Batteries</topic><topic>Battery state of charge estimation</topic><topic>Bragg gratings</topic><topic>Deep neural network</topic><topic>Diameters</topic><topic>Dual-diameter fiber Bragg gratings sensors</topic><topic>Electric charge</topic><topic>Electromagnetic interference</topic><topic>Estimation</topic><topic>Fiber gratings</topic><topic>High resistance</topic><topic>Lithium-ion batteries</topic><topic>Management systems</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>Optical fiber sensors</topic><topic>Optical fibers</topic><topic>Parameters</topic><topic>Power management</topic><topic>Rechargeable batteries</topic><topic>Sensors</topic><topic>State of charge</topic><topic>Strain</topic><topic>Strain and temperature monitoring</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Xudong</creatorcontrib><creatorcontrib>Wu, Wen</creatorcontrib><creatorcontrib>Li, Zhencheng</creatorcontrib><creatorcontrib>Han, Xile</creatorcontrib><creatorcontrib>Xue, Xiaobin</creatorcontrib><creatorcontrib>Xiao, Gaozhi</creatorcontrib><creatorcontrib>Guo, Tuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xia, Xudong</au><au>Wu, Wen</au><au>Li, Zhencheng</au><au>Han, Xile</au><au>Xue, Xiaobin</au><au>Xiao, Gaozhi</au><au>Guo, Tuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>State of charge estimation for commercial Li-ion battery based on simultaneously strain and temperature monitoring over optical fiber sensors</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>The combination of artificial intelligence methods and multisensory is crucial for future intelligent battery management systems (BMS). Among multi-sensing technologies in batteries, simultaneously monitoring the strain and temperature is essential to determine the batteries' safety and state of charge (SoC). However, the combination still faces a few challenges, such as obtaining multi-sensing parameters with only one simple and easy-to-fabricate sensor, and how to use artificial intelligence and measurement parameters such as strain and temperature for effective modeling. To address these, we propose a novel sensing technique based on a compact dual-diameter fiber Bragg gratings (FBGs) sensor capable of being attached to the surface of a working lithium-ion pouch cell to simultaneously monitor the battery's surface strain and temperature. Then, based on the collected data of strain and temperature, we have constructed deep artificial neural network (DNN) models with different inputs to realize accurate battery SoC estimation with high resistance to electromagnetic interference. Based on our DNN models, the experimental results show that strain and temperature information can be used as supplementary parameters for improved SoC estimation (accuracy increased from 97.40% to 99.94%). Meanwhile, we also find that by just using the strain and temperature information obtained by the optical fiber sensor, the SoC estimation can be achieved without the voltage and current inputs. This new optical fiber measurement tool will provide crucial additional capabilities to battery sensing methods, especially for the future intelligent BMS.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2024.3390696</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6189-1335</orcidid><orcidid>https://orcid.org/0009-0008-4059-4532</orcidid><orcidid>https://orcid.org/0000-0001-7717-1818</orcidid><orcidid>https://orcid.org/0009-0009-1560-5030</orcidid><orcidid>https://orcid.org/0000-0001-5392-8601</orcidid><orcidid>https://orcid.org/0009-0004-7476-0632</orcidid><orcidid>https://orcid.org/0000-0003-0569-9212</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2024-01, Vol.73, p.1-1
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_10505040
source IEEE/IET Electronic Library (IEL)
subjects Artificial intelligence
Artificial neural networks
Batteries
Battery state of charge estimation
Bragg gratings
Deep neural network
Diameters
Dual-diameter fiber Bragg gratings sensors
Electric charge
Electromagnetic interference
Estimation
Fiber gratings
High resistance
Lithium-ion batteries
Management systems
Mathematical models
Monitoring
Optical fiber sensors
Optical fibers
Parameters
Power management
Rechargeable batteries
Sensors
State of charge
Strain
Strain and temperature monitoring
Temperature measurement
Temperature sensors
title State of charge estimation for commercial Li-ion battery based on simultaneously strain and temperature monitoring over optical fiber sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=State%20of%20charge%20estimation%20for%20commercial%20Li-ion%20battery%20based%20on%20simultaneously%20strain%20and%20temperature%20monitoring%20over%20optical%20fiber%20sensors&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Xia,%20Xudong&rft.date=2024-01-01&rft.volume=73&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3390696&rft_dat=%3Cproquest_RIE%3E3049489860%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049489860&rft_id=info:pmid/&rft_ieee_id=10505040&rfr_iscdi=true