The EmoPain@Home Dataset: Capturing Pain Level and Activity Recognition for People with Chronic Pain in Their Homes

Chronic pain is a prevalent condition where fear of movement and pain interfere with everyday functioning. Yet, there is no open body movement dataset for people with chronic pain in everyday settings. Our EmoPain@Home dataset addresses this with capture from 18 people with and without chronic pain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on affective computing 2024, p.1-14
Hauptverfasser: Olugbade, Temitayo, Buono, Raffaele Andrea, Potapov, Kyrill, Bujorianu, Alex, Williams, Amanda C de C, Garcia, Santiago de Ossorno, Gold, Nicolas, Holloway, Catherine, Bianchi-Berthouze, Nadia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title IEEE transactions on affective computing
container_volume
creator Olugbade, Temitayo
Buono, Raffaele Andrea
Potapov, Kyrill
Bujorianu, Alex
Williams, Amanda C de C
Garcia, Santiago de Ossorno
Gold, Nicolas
Holloway, Catherine
Bianchi-Berthouze, Nadia
description Chronic pain is a prevalent condition where fear of movement and pain interfere with everyday functioning. Yet, there is no open body movement dataset for people with chronic pain in everyday settings. Our EmoPain@Home dataset addresses this with capture from 18 people with and without chronic pain in their homes, while they performed their routine activities. The data includes labels for pain, worry, and movement confidence continuously recorded for activity instances for the people with chronic pain. We explored baseline two-level pain detection based on this dataset and obtained 0.62 mean F1 score. However, extension of the dataset led to deterioration in performance confirming high variability in pain expressions for real world settings. We investigated baseline activity recognition for this setting as a first step in exploring the use of the activity label as contextual information for improving pain level classification performance. We obtained mean F1 score of 0.43 for 9 activity types, highlighting its feasibility. Further exploration, however, showed that data from healthy people cannot be easily leveraged for improving performance because worry and low confidence alter activity strategies for people with chronic pain. Our dataset and findings lay critical groundwork for automatic assessment of pain experience and behaviour in the wild.
doi_str_mv 10.1109/TAFFC.2024.3390837
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10504978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10504978</ieee_id><sourcerecordid>10_1109_TAFFC_2024_3390837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c134t-e545e66c16a8df645494df771319d45d2c7e53cbb902201fe3197ba0e623f6553</originalsourceid><addsrcrecordid>eNpNkM1qAjEQgENpoWJ9gdJDXmBtfjemp8pWa0GoFHteYnZWU3QjSWrx7d2tHhwGZpjhm4EPoUdKhpQS_bwcT6fFkBEmhpxrMuLqBvWoFjrjRMjbq_4eDWL8IW1wznOmeiguN4AnO78wrnmd-R3gN5NMhPSCC7NPv8E1a9wt8RwOsMWmqfDYJndw6Yi_wPp145LzDa59wAvw-y3gP5c2uNgE3zh7Ztts_7iAuw_xAd3VZhthcKl99D2dLItZNv98_yjG88xSLlIGUkjIc0tzM6rqXEihRVUrRTnVlZAVswokt6uVJowRWkM7VytDIGe8zqXkfcTOd23wMQaoy31wOxOOJSVlZ678N1d25sqLuRZ6OkMOAK4ASYRWI34Cn6hp-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The EmoPain@Home Dataset: Capturing Pain Level and Activity Recognition for People with Chronic Pain in Their Homes</title><source>IEEE Xplore</source><creator>Olugbade, Temitayo ; Buono, Raffaele Andrea ; Potapov, Kyrill ; Bujorianu, Alex ; Williams, Amanda C de C ; Garcia, Santiago de Ossorno ; Gold, Nicolas ; Holloway, Catherine ; Bianchi-Berthouze, Nadia</creator><creatorcontrib>Olugbade, Temitayo ; Buono, Raffaele Andrea ; Potapov, Kyrill ; Bujorianu, Alex ; Williams, Amanda C de C ; Garcia, Santiago de Ossorno ; Gold, Nicolas ; Holloway, Catherine ; Bianchi-Berthouze, Nadia</creatorcontrib><description>Chronic pain is a prevalent condition where fear of movement and pain interfere with everyday functioning. Yet, there is no open body movement dataset for people with chronic pain in everyday settings. Our EmoPain@Home dataset addresses this with capture from 18 people with and without chronic pain in their homes, while they performed their routine activities. The data includes labels for pain, worry, and movement confidence continuously recorded for activity instances for the people with chronic pain. We explored baseline two-level pain detection based on this dataset and obtained 0.62 mean F1 score. However, extension of the dataset led to deterioration in performance confirming high variability in pain expressions for real world settings. We investigated baseline activity recognition for this setting as a first step in exploring the use of the activity label as contextual information for improving pain level classification performance. We obtained mean F1 score of 0.43 for 9 activity types, highlighting its feasibility. Further exploration, however, showed that data from healthy people cannot be easily leveraged for improving performance because worry and low confidence alter activity strategies for people with chronic pain. Our dataset and findings lay critical groundwork for automatic assessment of pain experience and behaviour in the wild.</description><identifier>ISSN: 1949-3045</identifier><identifier>EISSN: 1949-3045</identifier><identifier>DOI: 10.1109/TAFFC.2024.3390837</identifier><identifier>CODEN: ITACBQ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Activity recognition ; affect recognition ; body movement ; Cameras ; chronic pain ; confidence ; dataset ; Electromyography ; Legged locomotion ; Pain ; Pediatrics ; Physiology ; worry</subject><ispartof>IEEE transactions on affective computing, 2024, p.1-14</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3626-8485 ; 0000-0002-2195-5995 ; 0000-0003-3761-8704 ; 0000-0002-2838-6131 ; 0000-0001-8921-0044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10504978$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4014,27914,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10504978$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Olugbade, Temitayo</creatorcontrib><creatorcontrib>Buono, Raffaele Andrea</creatorcontrib><creatorcontrib>Potapov, Kyrill</creatorcontrib><creatorcontrib>Bujorianu, Alex</creatorcontrib><creatorcontrib>Williams, Amanda C de C</creatorcontrib><creatorcontrib>Garcia, Santiago de Ossorno</creatorcontrib><creatorcontrib>Gold, Nicolas</creatorcontrib><creatorcontrib>Holloway, Catherine</creatorcontrib><creatorcontrib>Bianchi-Berthouze, Nadia</creatorcontrib><title>The EmoPain@Home Dataset: Capturing Pain Level and Activity Recognition for People with Chronic Pain in Their Homes</title><title>IEEE transactions on affective computing</title><addtitle>TAFFC</addtitle><description>Chronic pain is a prevalent condition where fear of movement and pain interfere with everyday functioning. Yet, there is no open body movement dataset for people with chronic pain in everyday settings. Our EmoPain@Home dataset addresses this with capture from 18 people with and without chronic pain in their homes, while they performed their routine activities. The data includes labels for pain, worry, and movement confidence continuously recorded for activity instances for the people with chronic pain. We explored baseline two-level pain detection based on this dataset and obtained 0.62 mean F1 score. However, extension of the dataset led to deterioration in performance confirming high variability in pain expressions for real world settings. We investigated baseline activity recognition for this setting as a first step in exploring the use of the activity label as contextual information for improving pain level classification performance. We obtained mean F1 score of 0.43 for 9 activity types, highlighting its feasibility. Further exploration, however, showed that data from healthy people cannot be easily leveraged for improving performance because worry and low confidence alter activity strategies for people with chronic pain. Our dataset and findings lay critical groundwork for automatic assessment of pain experience and behaviour in the wild.</description><subject>Activity recognition</subject><subject>affect recognition</subject><subject>body movement</subject><subject>Cameras</subject><subject>chronic pain</subject><subject>confidence</subject><subject>dataset</subject><subject>Electromyography</subject><subject>Legged locomotion</subject><subject>Pain</subject><subject>Pediatrics</subject><subject>Physiology</subject><subject>worry</subject><issn>1949-3045</issn><issn>1949-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1qAjEQgENpoWJ9gdJDXmBtfjemp8pWa0GoFHteYnZWU3QjSWrx7d2tHhwGZpjhm4EPoUdKhpQS_bwcT6fFkBEmhpxrMuLqBvWoFjrjRMjbq_4eDWL8IW1wznOmeiguN4AnO78wrnmd-R3gN5NMhPSCC7NPv8E1a9wt8RwOsMWmqfDYJndw6Yi_wPp145LzDa59wAvw-y3gP5c2uNgE3zh7Ztts_7iAuw_xAd3VZhthcKl99D2dLItZNv98_yjG88xSLlIGUkjIc0tzM6rqXEihRVUrRTnVlZAVswokt6uVJowRWkM7VytDIGe8zqXkfcTOd23wMQaoy31wOxOOJSVlZ678N1d25sqLuRZ6OkMOAK4ASYRWI34Cn6hp-w</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Olugbade, Temitayo</creator><creator>Buono, Raffaele Andrea</creator><creator>Potapov, Kyrill</creator><creator>Bujorianu, Alex</creator><creator>Williams, Amanda C de C</creator><creator>Garcia, Santiago de Ossorno</creator><creator>Gold, Nicolas</creator><creator>Holloway, Catherine</creator><creator>Bianchi-Berthouze, Nadia</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3626-8485</orcidid><orcidid>https://orcid.org/0000-0002-2195-5995</orcidid><orcidid>https://orcid.org/0000-0003-3761-8704</orcidid><orcidid>https://orcid.org/0000-0002-2838-6131</orcidid><orcidid>https://orcid.org/0000-0001-8921-0044</orcidid></search><sort><creationdate>2024</creationdate><title>The EmoPain@Home Dataset: Capturing Pain Level and Activity Recognition for People with Chronic Pain in Their Homes</title><author>Olugbade, Temitayo ; Buono, Raffaele Andrea ; Potapov, Kyrill ; Bujorianu, Alex ; Williams, Amanda C de C ; Garcia, Santiago de Ossorno ; Gold, Nicolas ; Holloway, Catherine ; Bianchi-Berthouze, Nadia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c134t-e545e66c16a8df645494df771319d45d2c7e53cbb902201fe3197ba0e623f6553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activity recognition</topic><topic>affect recognition</topic><topic>body movement</topic><topic>Cameras</topic><topic>chronic pain</topic><topic>confidence</topic><topic>dataset</topic><topic>Electromyography</topic><topic>Legged locomotion</topic><topic>Pain</topic><topic>Pediatrics</topic><topic>Physiology</topic><topic>worry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olugbade, Temitayo</creatorcontrib><creatorcontrib>Buono, Raffaele Andrea</creatorcontrib><creatorcontrib>Potapov, Kyrill</creatorcontrib><creatorcontrib>Bujorianu, Alex</creatorcontrib><creatorcontrib>Williams, Amanda C de C</creatorcontrib><creatorcontrib>Garcia, Santiago de Ossorno</creatorcontrib><creatorcontrib>Gold, Nicolas</creatorcontrib><creatorcontrib>Holloway, Catherine</creatorcontrib><creatorcontrib>Bianchi-Berthouze, Nadia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE transactions on affective computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Olugbade, Temitayo</au><au>Buono, Raffaele Andrea</au><au>Potapov, Kyrill</au><au>Bujorianu, Alex</au><au>Williams, Amanda C de C</au><au>Garcia, Santiago de Ossorno</au><au>Gold, Nicolas</au><au>Holloway, Catherine</au><au>Bianchi-Berthouze, Nadia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The EmoPain@Home Dataset: Capturing Pain Level and Activity Recognition for People with Chronic Pain in Their Homes</atitle><jtitle>IEEE transactions on affective computing</jtitle><stitle>TAFFC</stitle><date>2024</date><risdate>2024</risdate><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1949-3045</issn><eissn>1949-3045</eissn><coden>ITACBQ</coden><abstract>Chronic pain is a prevalent condition where fear of movement and pain interfere with everyday functioning. Yet, there is no open body movement dataset for people with chronic pain in everyday settings. Our EmoPain@Home dataset addresses this with capture from 18 people with and without chronic pain in their homes, while they performed their routine activities. The data includes labels for pain, worry, and movement confidence continuously recorded for activity instances for the people with chronic pain. We explored baseline two-level pain detection based on this dataset and obtained 0.62 mean F1 score. However, extension of the dataset led to deterioration in performance confirming high variability in pain expressions for real world settings. We investigated baseline activity recognition for this setting as a first step in exploring the use of the activity label as contextual information for improving pain level classification performance. We obtained mean F1 score of 0.43 for 9 activity types, highlighting its feasibility. Further exploration, however, showed that data from healthy people cannot be easily leveraged for improving performance because worry and low confidence alter activity strategies for people with chronic pain. Our dataset and findings lay critical groundwork for automatic assessment of pain experience and behaviour in the wild.</abstract><pub>IEEE</pub><doi>10.1109/TAFFC.2024.3390837</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3626-8485</orcidid><orcidid>https://orcid.org/0000-0002-2195-5995</orcidid><orcidid>https://orcid.org/0000-0003-3761-8704</orcidid><orcidid>https://orcid.org/0000-0002-2838-6131</orcidid><orcidid>https://orcid.org/0000-0001-8921-0044</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3045
ispartof IEEE transactions on affective computing, 2024, p.1-14
issn 1949-3045
1949-3045
language eng
recordid cdi_ieee_primary_10504978
source IEEE Xplore
subjects Activity recognition
affect recognition
body movement
Cameras
chronic pain
confidence
dataset
Electromyography
Legged locomotion
Pain
Pediatrics
Physiology
worry
title The EmoPain@Home Dataset: Capturing Pain Level and Activity Recognition for People with Chronic Pain in Their Homes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A51%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20EmoPain@Home%20Dataset:%20Capturing%20Pain%20Level%20and%20Activity%20Recognition%20for%20People%20with%20Chronic%20Pain%20in%20Their%20Homes&rft.jtitle=IEEE%20transactions%20on%20affective%20computing&rft.au=Olugbade,%20Temitayo&rft.date=2024&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1949-3045&rft.eissn=1949-3045&rft.coden=ITACBQ&rft_id=info:doi/10.1109/TAFFC.2024.3390837&rft_dat=%3Ccrossref_RIE%3E10_1109_TAFFC_2024_3390837%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10504978&rfr_iscdi=true