A Data-Driven Model for Power Loss Estimation of Magnetic Materials Based on Multi-Objective Optimization and Transfer Learning

Traditional methods such as Steinmetz's equation (SE) and its improved variant (iGSE) have demonstrated limited precision in estimating power loss for magnetic materials. The introduction of Neural Network technology for assessing magnetic component power loss has significantly enhanced accurac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE open journal of power electronics 2024, Vol.5, p.605-617
Hauptverfasser: Li, Z., Wang, L., Liu, R., Mirzadarani, R., Luo, T., Lyu, D., Niasar, M. Ghaffarian, Qin, Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 617
container_issue
container_start_page 605
container_title IEEE open journal of power electronics
container_volume 5
creator Li, Z.
Wang, L.
Liu, R.
Mirzadarani, R.
Luo, T.
Lyu, D.
Niasar, M. Ghaffarian
Qin, Z.
description Traditional methods such as Steinmetz's equation (SE) and its improved variant (iGSE) have demonstrated limited precision in estimating power loss for magnetic materials. The introduction of Neural Network technology for assessing magnetic component power loss has significantly enhanced accuracy. Yet, an efficient method to incorporate detailed flux density information-which critically impacts accuracy-remains elusive. Our study introduces an innovative approach that merges Fast Fourier Transform (FFT) with a Feedforward Neural Network (FNN), aiming to overcome this challenge. To optimize the model further and strike a refined balance between complexity and accuracy, Multi-Objective Optimization (MOO) is employed to identify the ideal combination of hyperparameters, such as layer count, neuron number, activation functions, optimizers, and batch size. This optimized Neural Network outperforms traditionally intuitive models in both accuracy and size. Leveraging the optimized base model for known materials, transfer learning is applied to new materials with limited data, effectively addressing data scarcity. The proposed approach substantially enhances model training efficiency, achieves remarkable accuracy, and sets an example for Artificial Intelligence applications in loss and electrical characteristic predictions with challenges of model size, accuracy goals, and limited data.
doi_str_mv 10.1109/OJPEL.2024.3389211
format Article
fullrecord <record><control><sourceid>doaj_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10502151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10502151</ieee_id><doaj_id>oai_doaj_org_article_1e0beb4ffb2d4cd6957aae57836dff66</doaj_id><sourcerecordid>oai_doaj_org_article_1e0beb4ffb2d4cd6957aae57836dff66</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-137fa6f3a814e390d5d4a56bdd561bdf0c011926d50467b43bb5daa9c1a1d06c3</originalsourceid><addsrcrecordid>eNpNkdtKAzEQhhdRUNQXEC_yAlszObV76aGeaKkXeh0mm0lJqRvJrore-OqmVsSrGSZ8HzP5q-oE-AiAN2eL-4fpbCS4UCMpJ40A2KkOhFGqBglq91-_Xx33_YpzLjRAGRxUX-fsCgesr3J8o47Nk6c1Cymzh_ROmc1S37NpP8RnHGLqWApsjsuOhtiWZqAccd2zC-zJs_I8f10PsV64FbVD8bHFSyHj55bFzrPHjF0fNmLC3MVueVTthaKg4996WD1dTx8vb-vZ4ubu8nxWt1I0Q1l-HNAEiRNQJBvutVeojfNeG3A-8JYDNMJ4zZUZOyWd0x6xaQHBc9PKw-pu6_UJV_Yll4Pyh00Y7c8g5aXFXK5akwXijpwKwQmvWm8aPUYkPZ5I40MwprjE1tXm8j2Zwp8PuN0kYn8SsZtE7G8iBTrdQpGI_gGaC9AgvwFt04k1</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Data-Driven Model for Power Loss Estimation of Magnetic Materials Based on Multi-Objective Optimization and Transfer Learning</title><source>Free E-Journal (出版社公開部分のみ)</source><source>IEEE Xplore Open Access Journals</source><source>Directory of Open Access Journals (Open Access)</source><creator>Li, Z. ; Wang, L. ; Liu, R. ; Mirzadarani, R. ; Luo, T. ; Lyu, D. ; Niasar, M. Ghaffarian ; Qin, Z.</creator><creatorcontrib>Li, Z. ; Wang, L. ; Liu, R. ; Mirzadarani, R. ; Luo, T. ; Lyu, D. ; Niasar, M. Ghaffarian ; Qin, Z.</creatorcontrib><description>Traditional methods such as Steinmetz's equation (SE) and its improved variant (iGSE) have demonstrated limited precision in estimating power loss for magnetic materials. The introduction of Neural Network technology for assessing magnetic component power loss has significantly enhanced accuracy. Yet, an efficient method to incorporate detailed flux density information-which critically impacts accuracy-remains elusive. Our study introduces an innovative approach that merges Fast Fourier Transform (FFT) with a Feedforward Neural Network (FNN), aiming to overcome this challenge. To optimize the model further and strike a refined balance between complexity and accuracy, Multi-Objective Optimization (MOO) is employed to identify the ideal combination of hyperparameters, such as layer count, neuron number, activation functions, optimizers, and batch size. This optimized Neural Network outperforms traditionally intuitive models in both accuracy and size. Leveraging the optimized base model for known materials, transfer learning is applied to new materials with limited data, effectively addressing data scarcity. The proposed approach substantially enhances model training efficiency, achieves remarkable accuracy, and sets an example for Artificial Intelligence applications in loss and electrical characteristic predictions with challenges of model size, accuracy goals, and limited data.</description><identifier>ISSN: 2644-1314</identifier><identifier>EISSN: 2644-1314</identifier><identifier>DOI: 10.1109/OJPEL.2024.3389211</identifier><identifier>CODEN: IOJPA6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological neural networks ; core loss ; Data models ; data-driven method ; Magnetic hysteresis ; Magnetic losses ; Magnetic materials ; neural network ; Power magnetics ; Training ; Transfer learning</subject><ispartof>IEEE open journal of power electronics, 2024, Vol.5, p.605-617</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c329t-137fa6f3a814e390d5d4a56bdd561bdf0c011926d50467b43bb5daa9c1a1d06c3</cites><orcidid>0000-0002-9491-1926 ; 0000-0002-0136-7643 ; 0000-0002-7408-7706 ; 0000-0001-9306-3825 ; 0000-0002-7511-2977 ; 0000-0001-8421-5372 ; 0000-0002-6589-2359 ; 0000-0003-1766-8077</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10502151$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Li, Z.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Liu, R.</creatorcontrib><creatorcontrib>Mirzadarani, R.</creatorcontrib><creatorcontrib>Luo, T.</creatorcontrib><creatorcontrib>Lyu, D.</creatorcontrib><creatorcontrib>Niasar, M. Ghaffarian</creatorcontrib><creatorcontrib>Qin, Z.</creatorcontrib><title>A Data-Driven Model for Power Loss Estimation of Magnetic Materials Based on Multi-Objective Optimization and Transfer Learning</title><title>IEEE open journal of power electronics</title><addtitle>OJPEL</addtitle><description>Traditional methods such as Steinmetz's equation (SE) and its improved variant (iGSE) have demonstrated limited precision in estimating power loss for magnetic materials. The introduction of Neural Network technology for assessing magnetic component power loss has significantly enhanced accuracy. Yet, an efficient method to incorporate detailed flux density information-which critically impacts accuracy-remains elusive. Our study introduces an innovative approach that merges Fast Fourier Transform (FFT) with a Feedforward Neural Network (FNN), aiming to overcome this challenge. To optimize the model further and strike a refined balance between complexity and accuracy, Multi-Objective Optimization (MOO) is employed to identify the ideal combination of hyperparameters, such as layer count, neuron number, activation functions, optimizers, and batch size. This optimized Neural Network outperforms traditionally intuitive models in both accuracy and size. Leveraging the optimized base model for known materials, transfer learning is applied to new materials with limited data, effectively addressing data scarcity. The proposed approach substantially enhances model training efficiency, achieves remarkable accuracy, and sets an example for Artificial Intelligence applications in loss and electrical characteristic predictions with challenges of model size, accuracy goals, and limited data.</description><subject>Biological neural networks</subject><subject>core loss</subject><subject>Data models</subject><subject>data-driven method</subject><subject>Magnetic hysteresis</subject><subject>Magnetic losses</subject><subject>Magnetic materials</subject><subject>neural network</subject><subject>Power magnetics</subject><subject>Training</subject><subject>Transfer learning</subject><issn>2644-1314</issn><issn>2644-1314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkdtKAzEQhhdRUNQXEC_yAlszObV76aGeaKkXeh0mm0lJqRvJrore-OqmVsSrGSZ8HzP5q-oE-AiAN2eL-4fpbCS4UCMpJ40A2KkOhFGqBglq91-_Xx33_YpzLjRAGRxUX-fsCgesr3J8o47Nk6c1Cymzh_ROmc1S37NpP8RnHGLqWApsjsuOhtiWZqAccd2zC-zJs_I8f10PsV64FbVD8bHFSyHj55bFzrPHjF0fNmLC3MVueVTthaKg4996WD1dTx8vb-vZ4ubu8nxWt1I0Q1l-HNAEiRNQJBvutVeojfNeG3A-8JYDNMJ4zZUZOyWd0x6xaQHBc9PKw-pu6_UJV_Yll4Pyh00Y7c8g5aXFXK5akwXijpwKwQmvWm8aPUYkPZ5I40MwprjE1tXm8j2Zwp8PuN0kYn8SsZtE7G8iBTrdQpGI_gGaC9AgvwFt04k1</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Li, Z.</creator><creator>Wang, L.</creator><creator>Liu, R.</creator><creator>Mirzadarani, R.</creator><creator>Luo, T.</creator><creator>Lyu, D.</creator><creator>Niasar, M. Ghaffarian</creator><creator>Qin, Z.</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9491-1926</orcidid><orcidid>https://orcid.org/0000-0002-0136-7643</orcidid><orcidid>https://orcid.org/0000-0002-7408-7706</orcidid><orcidid>https://orcid.org/0000-0001-9306-3825</orcidid><orcidid>https://orcid.org/0000-0002-7511-2977</orcidid><orcidid>https://orcid.org/0000-0001-8421-5372</orcidid><orcidid>https://orcid.org/0000-0002-6589-2359</orcidid><orcidid>https://orcid.org/0000-0003-1766-8077</orcidid></search><sort><creationdate>2024</creationdate><title>A Data-Driven Model for Power Loss Estimation of Magnetic Materials Based on Multi-Objective Optimization and Transfer Learning</title><author>Li, Z. ; Wang, L. ; Liu, R. ; Mirzadarani, R. ; Luo, T. ; Lyu, D. ; Niasar, M. Ghaffarian ; Qin, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-137fa6f3a814e390d5d4a56bdd561bdf0c011926d50467b43bb5daa9c1a1d06c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological neural networks</topic><topic>core loss</topic><topic>Data models</topic><topic>data-driven method</topic><topic>Magnetic hysteresis</topic><topic>Magnetic losses</topic><topic>Magnetic materials</topic><topic>neural network</topic><topic>Power magnetics</topic><topic>Training</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Z.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Liu, R.</creatorcontrib><creatorcontrib>Mirzadarani, R.</creatorcontrib><creatorcontrib>Luo, T.</creatorcontrib><creatorcontrib>Lyu, D.</creatorcontrib><creatorcontrib>Niasar, M. Ghaffarian</creatorcontrib><creatorcontrib>Qin, Z.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>IEEE open journal of power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Z.</au><au>Wang, L.</au><au>Liu, R.</au><au>Mirzadarani, R.</au><au>Luo, T.</au><au>Lyu, D.</au><au>Niasar, M. Ghaffarian</au><au>Qin, Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Data-Driven Model for Power Loss Estimation of Magnetic Materials Based on Multi-Objective Optimization and Transfer Learning</atitle><jtitle>IEEE open journal of power electronics</jtitle><stitle>OJPEL</stitle><date>2024</date><risdate>2024</risdate><volume>5</volume><spage>605</spage><epage>617</epage><pages>605-617</pages><issn>2644-1314</issn><eissn>2644-1314</eissn><coden>IOJPA6</coden><abstract>Traditional methods such as Steinmetz's equation (SE) and its improved variant (iGSE) have demonstrated limited precision in estimating power loss for magnetic materials. The introduction of Neural Network technology for assessing magnetic component power loss has significantly enhanced accuracy. Yet, an efficient method to incorporate detailed flux density information-which critically impacts accuracy-remains elusive. Our study introduces an innovative approach that merges Fast Fourier Transform (FFT) with a Feedforward Neural Network (FNN), aiming to overcome this challenge. To optimize the model further and strike a refined balance between complexity and accuracy, Multi-Objective Optimization (MOO) is employed to identify the ideal combination of hyperparameters, such as layer count, neuron number, activation functions, optimizers, and batch size. This optimized Neural Network outperforms traditionally intuitive models in both accuracy and size. Leveraging the optimized base model for known materials, transfer learning is applied to new materials with limited data, effectively addressing data scarcity. The proposed approach substantially enhances model training efficiency, achieves remarkable accuracy, and sets an example for Artificial Intelligence applications in loss and electrical characteristic predictions with challenges of model size, accuracy goals, and limited data.</abstract><pub>IEEE</pub><doi>10.1109/OJPEL.2024.3389211</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9491-1926</orcidid><orcidid>https://orcid.org/0000-0002-0136-7643</orcidid><orcidid>https://orcid.org/0000-0002-7408-7706</orcidid><orcidid>https://orcid.org/0000-0001-9306-3825</orcidid><orcidid>https://orcid.org/0000-0002-7511-2977</orcidid><orcidid>https://orcid.org/0000-0001-8421-5372</orcidid><orcidid>https://orcid.org/0000-0002-6589-2359</orcidid><orcidid>https://orcid.org/0000-0003-1766-8077</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2644-1314
ispartof IEEE open journal of power electronics, 2024, Vol.5, p.605-617
issn 2644-1314
2644-1314
language eng
recordid cdi_ieee_primary_10502151
source Free E-Journal (出版社公開部分のみ); IEEE Xplore Open Access Journals; Directory of Open Access Journals (Open Access)
subjects Biological neural networks
core loss
Data models
data-driven method
Magnetic hysteresis
Magnetic losses
Magnetic materials
neural network
Power magnetics
Training
Transfer learning
title A Data-Driven Model for Power Loss Estimation of Magnetic Materials Based on Multi-Objective Optimization and Transfer Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A14%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Data-Driven%20Model%20for%20Power%20Loss%20Estimation%20of%20Magnetic%20Materials%20Based%20on%20Multi-Objective%20Optimization%20and%20Transfer%20Learning&rft.jtitle=IEEE%20open%20journal%20of%20power%20electronics&rft.au=Li,%20Z.&rft.date=2024&rft.volume=5&rft.spage=605&rft.epage=617&rft.pages=605-617&rft.issn=2644-1314&rft.eissn=2644-1314&rft.coden=IOJPA6&rft_id=info:doi/10.1109/OJPEL.2024.3389211&rft_dat=%3Cdoaj_ieee_%3Eoai_doaj_org_article_1e0beb4ffb2d4cd6957aae57836dff66%3C/doaj_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10502151&rft_doaj_id=oai_doaj_org_article_1e0beb4ffb2d4cd6957aae57836dff66&rfr_iscdi=true