A Data-Driven Model for Power Loss Estimation of Magnetic Materials Based on Multi-Objective Optimization and Transfer Learning
Traditional methods such as Steinmetz's equation (SE) and its improved variant (iGSE) have demonstrated limited precision in estimating power loss for magnetic materials. The introduction of Neural Network technology for assessing magnetic component power loss has significantly enhanced accurac...
Gespeichert in:
Veröffentlicht in: | IEEE open journal of power electronics 2024, Vol.5, p.605-617 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 617 |
---|---|
container_issue | |
container_start_page | 605 |
container_title | IEEE open journal of power electronics |
container_volume | 5 |
creator | Li, Z. Wang, L. Liu, R. Mirzadarani, R. Luo, T. Lyu, D. Niasar, M. Ghaffarian Qin, Z. |
description | Traditional methods such as Steinmetz's equation (SE) and its improved variant (iGSE) have demonstrated limited precision in estimating power loss for magnetic materials. The introduction of Neural Network technology for assessing magnetic component power loss has significantly enhanced accuracy. Yet, an efficient method to incorporate detailed flux density information-which critically impacts accuracy-remains elusive. Our study introduces an innovative approach that merges Fast Fourier Transform (FFT) with a Feedforward Neural Network (FNN), aiming to overcome this challenge. To optimize the model further and strike a refined balance between complexity and accuracy, Multi-Objective Optimization (MOO) is employed to identify the ideal combination of hyperparameters, such as layer count, neuron number, activation functions, optimizers, and batch size. This optimized Neural Network outperforms traditionally intuitive models in both accuracy and size. Leveraging the optimized base model for known materials, transfer learning is applied to new materials with limited data, effectively addressing data scarcity. The proposed approach substantially enhances model training efficiency, achieves remarkable accuracy, and sets an example for Artificial Intelligence applications in loss and electrical characteristic predictions with challenges of model size, accuracy goals, and limited data. |
doi_str_mv | 10.1109/OJPEL.2024.3389211 |
format | Article |
fullrecord | <record><control><sourceid>doaj_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10502151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10502151</ieee_id><doaj_id>oai_doaj_org_article_1e0beb4ffb2d4cd6957aae57836dff66</doaj_id><sourcerecordid>oai_doaj_org_article_1e0beb4ffb2d4cd6957aae57836dff66</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-137fa6f3a814e390d5d4a56bdd561bdf0c011926d50467b43bb5daa9c1a1d06c3</originalsourceid><addsrcrecordid>eNpNkdtKAzEQhhdRUNQXEC_yAlszObV76aGeaKkXeh0mm0lJqRvJrore-OqmVsSrGSZ8HzP5q-oE-AiAN2eL-4fpbCS4UCMpJ40A2KkOhFGqBglq91-_Xx33_YpzLjRAGRxUX-fsCgesr3J8o47Nk6c1Cymzh_ROmc1S37NpP8RnHGLqWApsjsuOhtiWZqAccd2zC-zJs_I8f10PsV64FbVD8bHFSyHj55bFzrPHjF0fNmLC3MVueVTthaKg4996WD1dTx8vb-vZ4ubu8nxWt1I0Q1l-HNAEiRNQJBvutVeojfNeG3A-8JYDNMJ4zZUZOyWd0x6xaQHBc9PKw-pu6_UJV_Yll4Pyh00Y7c8g5aXFXK5akwXijpwKwQmvWm8aPUYkPZ5I40MwprjE1tXm8j2Zwp8PuN0kYn8SsZtE7G8iBTrdQpGI_gGaC9AgvwFt04k1</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Data-Driven Model for Power Loss Estimation of Magnetic Materials Based on Multi-Objective Optimization and Transfer Learning</title><source>Free E-Journal (出版社公開部分のみ)</source><source>IEEE Xplore Open Access Journals</source><source>Directory of Open Access Journals (Open Access)</source><creator>Li, Z. ; Wang, L. ; Liu, R. ; Mirzadarani, R. ; Luo, T. ; Lyu, D. ; Niasar, M. Ghaffarian ; Qin, Z.</creator><creatorcontrib>Li, Z. ; Wang, L. ; Liu, R. ; Mirzadarani, R. ; Luo, T. ; Lyu, D. ; Niasar, M. Ghaffarian ; Qin, Z.</creatorcontrib><description>Traditional methods such as Steinmetz's equation (SE) and its improved variant (iGSE) have demonstrated limited precision in estimating power loss for magnetic materials. The introduction of Neural Network technology for assessing magnetic component power loss has significantly enhanced accuracy. Yet, an efficient method to incorporate detailed flux density information-which critically impacts accuracy-remains elusive. Our study introduces an innovative approach that merges Fast Fourier Transform (FFT) with a Feedforward Neural Network (FNN), aiming to overcome this challenge. To optimize the model further and strike a refined balance between complexity and accuracy, Multi-Objective Optimization (MOO) is employed to identify the ideal combination of hyperparameters, such as layer count, neuron number, activation functions, optimizers, and batch size. This optimized Neural Network outperforms traditionally intuitive models in both accuracy and size. Leveraging the optimized base model for known materials, transfer learning is applied to new materials with limited data, effectively addressing data scarcity. The proposed approach substantially enhances model training efficiency, achieves remarkable accuracy, and sets an example for Artificial Intelligence applications in loss and electrical characteristic predictions with challenges of model size, accuracy goals, and limited data.</description><identifier>ISSN: 2644-1314</identifier><identifier>EISSN: 2644-1314</identifier><identifier>DOI: 10.1109/OJPEL.2024.3389211</identifier><identifier>CODEN: IOJPA6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological neural networks ; core loss ; Data models ; data-driven method ; Magnetic hysteresis ; Magnetic losses ; Magnetic materials ; neural network ; Power magnetics ; Training ; Transfer learning</subject><ispartof>IEEE open journal of power electronics, 2024, Vol.5, p.605-617</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c329t-137fa6f3a814e390d5d4a56bdd561bdf0c011926d50467b43bb5daa9c1a1d06c3</cites><orcidid>0000-0002-9491-1926 ; 0000-0002-0136-7643 ; 0000-0002-7408-7706 ; 0000-0001-9306-3825 ; 0000-0002-7511-2977 ; 0000-0001-8421-5372 ; 0000-0002-6589-2359 ; 0000-0003-1766-8077</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10502151$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Li, Z.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Liu, R.</creatorcontrib><creatorcontrib>Mirzadarani, R.</creatorcontrib><creatorcontrib>Luo, T.</creatorcontrib><creatorcontrib>Lyu, D.</creatorcontrib><creatorcontrib>Niasar, M. Ghaffarian</creatorcontrib><creatorcontrib>Qin, Z.</creatorcontrib><title>A Data-Driven Model for Power Loss Estimation of Magnetic Materials Based on Multi-Objective Optimization and Transfer Learning</title><title>IEEE open journal of power electronics</title><addtitle>OJPEL</addtitle><description>Traditional methods such as Steinmetz's equation (SE) and its improved variant (iGSE) have demonstrated limited precision in estimating power loss for magnetic materials. The introduction of Neural Network technology for assessing magnetic component power loss has significantly enhanced accuracy. Yet, an efficient method to incorporate detailed flux density information-which critically impacts accuracy-remains elusive. Our study introduces an innovative approach that merges Fast Fourier Transform (FFT) with a Feedforward Neural Network (FNN), aiming to overcome this challenge. To optimize the model further and strike a refined balance between complexity and accuracy, Multi-Objective Optimization (MOO) is employed to identify the ideal combination of hyperparameters, such as layer count, neuron number, activation functions, optimizers, and batch size. This optimized Neural Network outperforms traditionally intuitive models in both accuracy and size. Leveraging the optimized base model for known materials, transfer learning is applied to new materials with limited data, effectively addressing data scarcity. The proposed approach substantially enhances model training efficiency, achieves remarkable accuracy, and sets an example for Artificial Intelligence applications in loss and electrical characteristic predictions with challenges of model size, accuracy goals, and limited data.</description><subject>Biological neural networks</subject><subject>core loss</subject><subject>Data models</subject><subject>data-driven method</subject><subject>Magnetic hysteresis</subject><subject>Magnetic losses</subject><subject>Magnetic materials</subject><subject>neural network</subject><subject>Power magnetics</subject><subject>Training</subject><subject>Transfer learning</subject><issn>2644-1314</issn><issn>2644-1314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkdtKAzEQhhdRUNQXEC_yAlszObV76aGeaKkXeh0mm0lJqRvJrore-OqmVsSrGSZ8HzP5q-oE-AiAN2eL-4fpbCS4UCMpJ40A2KkOhFGqBglq91-_Xx33_YpzLjRAGRxUX-fsCgesr3J8o47Nk6c1Cymzh_ROmc1S37NpP8RnHGLqWApsjsuOhtiWZqAccd2zC-zJs_I8f10PsV64FbVD8bHFSyHj55bFzrPHjF0fNmLC3MVueVTthaKg4996WD1dTx8vb-vZ4ubu8nxWt1I0Q1l-HNAEiRNQJBvutVeojfNeG3A-8JYDNMJ4zZUZOyWd0x6xaQHBc9PKw-pu6_UJV_Yll4Pyh00Y7c8g5aXFXK5akwXijpwKwQmvWm8aPUYkPZ5I40MwprjE1tXm8j2Zwp8PuN0kYn8SsZtE7G8iBTrdQpGI_gGaC9AgvwFt04k1</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Li, Z.</creator><creator>Wang, L.</creator><creator>Liu, R.</creator><creator>Mirzadarani, R.</creator><creator>Luo, T.</creator><creator>Lyu, D.</creator><creator>Niasar, M. Ghaffarian</creator><creator>Qin, Z.</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9491-1926</orcidid><orcidid>https://orcid.org/0000-0002-0136-7643</orcidid><orcidid>https://orcid.org/0000-0002-7408-7706</orcidid><orcidid>https://orcid.org/0000-0001-9306-3825</orcidid><orcidid>https://orcid.org/0000-0002-7511-2977</orcidid><orcidid>https://orcid.org/0000-0001-8421-5372</orcidid><orcidid>https://orcid.org/0000-0002-6589-2359</orcidid><orcidid>https://orcid.org/0000-0003-1766-8077</orcidid></search><sort><creationdate>2024</creationdate><title>A Data-Driven Model for Power Loss Estimation of Magnetic Materials Based on Multi-Objective Optimization and Transfer Learning</title><author>Li, Z. ; Wang, L. ; Liu, R. ; Mirzadarani, R. ; Luo, T. ; Lyu, D. ; Niasar, M. Ghaffarian ; Qin, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-137fa6f3a814e390d5d4a56bdd561bdf0c011926d50467b43bb5daa9c1a1d06c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological neural networks</topic><topic>core loss</topic><topic>Data models</topic><topic>data-driven method</topic><topic>Magnetic hysteresis</topic><topic>Magnetic losses</topic><topic>Magnetic materials</topic><topic>neural network</topic><topic>Power magnetics</topic><topic>Training</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Z.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Liu, R.</creatorcontrib><creatorcontrib>Mirzadarani, R.</creatorcontrib><creatorcontrib>Luo, T.</creatorcontrib><creatorcontrib>Lyu, D.</creatorcontrib><creatorcontrib>Niasar, M. Ghaffarian</creatorcontrib><creatorcontrib>Qin, Z.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>IEEE open journal of power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Z.</au><au>Wang, L.</au><au>Liu, R.</au><au>Mirzadarani, R.</au><au>Luo, T.</au><au>Lyu, D.</au><au>Niasar, M. Ghaffarian</au><au>Qin, Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Data-Driven Model for Power Loss Estimation of Magnetic Materials Based on Multi-Objective Optimization and Transfer Learning</atitle><jtitle>IEEE open journal of power electronics</jtitle><stitle>OJPEL</stitle><date>2024</date><risdate>2024</risdate><volume>5</volume><spage>605</spage><epage>617</epage><pages>605-617</pages><issn>2644-1314</issn><eissn>2644-1314</eissn><coden>IOJPA6</coden><abstract>Traditional methods such as Steinmetz's equation (SE) and its improved variant (iGSE) have demonstrated limited precision in estimating power loss for magnetic materials. The introduction of Neural Network technology for assessing magnetic component power loss has significantly enhanced accuracy. Yet, an efficient method to incorporate detailed flux density information-which critically impacts accuracy-remains elusive. Our study introduces an innovative approach that merges Fast Fourier Transform (FFT) with a Feedforward Neural Network (FNN), aiming to overcome this challenge. To optimize the model further and strike a refined balance between complexity and accuracy, Multi-Objective Optimization (MOO) is employed to identify the ideal combination of hyperparameters, such as layer count, neuron number, activation functions, optimizers, and batch size. This optimized Neural Network outperforms traditionally intuitive models in both accuracy and size. Leveraging the optimized base model for known materials, transfer learning is applied to new materials with limited data, effectively addressing data scarcity. The proposed approach substantially enhances model training efficiency, achieves remarkable accuracy, and sets an example for Artificial Intelligence applications in loss and electrical characteristic predictions with challenges of model size, accuracy goals, and limited data.</abstract><pub>IEEE</pub><doi>10.1109/OJPEL.2024.3389211</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9491-1926</orcidid><orcidid>https://orcid.org/0000-0002-0136-7643</orcidid><orcidid>https://orcid.org/0000-0002-7408-7706</orcidid><orcidid>https://orcid.org/0000-0001-9306-3825</orcidid><orcidid>https://orcid.org/0000-0002-7511-2977</orcidid><orcidid>https://orcid.org/0000-0001-8421-5372</orcidid><orcidid>https://orcid.org/0000-0002-6589-2359</orcidid><orcidid>https://orcid.org/0000-0003-1766-8077</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2644-1314 |
ispartof | IEEE open journal of power electronics, 2024, Vol.5, p.605-617 |
issn | 2644-1314 2644-1314 |
language | eng |
recordid | cdi_ieee_primary_10502151 |
source | Free E-Journal (出版社公開部分のみ); IEEE Xplore Open Access Journals; Directory of Open Access Journals (Open Access) |
subjects | Biological neural networks core loss Data models data-driven method Magnetic hysteresis Magnetic losses Magnetic materials neural network Power magnetics Training Transfer learning |
title | A Data-Driven Model for Power Loss Estimation of Magnetic Materials Based on Multi-Objective Optimization and Transfer Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A14%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Data-Driven%20Model%20for%20Power%20Loss%20Estimation%20of%20Magnetic%20Materials%20Based%20on%20Multi-Objective%20Optimization%20and%20Transfer%20Learning&rft.jtitle=IEEE%20open%20journal%20of%20power%20electronics&rft.au=Li,%20Z.&rft.date=2024&rft.volume=5&rft.spage=605&rft.epage=617&rft.pages=605-617&rft.issn=2644-1314&rft.eissn=2644-1314&rft.coden=IOJPA6&rft_id=info:doi/10.1109/OJPEL.2024.3389211&rft_dat=%3Cdoaj_ieee_%3Eoai_doaj_org_article_1e0beb4ffb2d4cd6957aae57836dff66%3C/doaj_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10502151&rft_doaj_id=oai_doaj_org_article_1e0beb4ffb2d4cd6957aae57836dff66&rfr_iscdi=true |