Observer-Based Adaptive Robust Precision Motion Control of a Multi-Joint Hydraulic Manipulator

Hydraulic manipulators are usually applied in heavy-load and harsh operation tasks. However, when faced with a complex operation, the traditional proportional-integral-derivative (PID) control may not meet requirements for high control performance. Model-based full-state-feedback control is an effec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/CAA journal of automatica sinica 2024-05, Vol.11 (5), p.1213-1226
Hauptverfasser: Chen, Zheng, Zhou, Shizhao, Shen, Chong, Lyu, Litong, Zhang, Junhui, Yao, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1226
container_issue 5
container_start_page 1213
container_title IEEE/CAA journal of automatica sinica
container_volume 11
creator Chen, Zheng
Zhou, Shizhao
Shen, Chong
Lyu, Litong
Zhang, Junhui
Yao, Bin
description Hydraulic manipulators are usually applied in heavy-load and harsh operation tasks. However, when faced with a complex operation, the traditional proportional-integral-derivative (PID) control may not meet requirements for high control performance. Model-based full-state-feedback control is an effective alternative, but the states of a hydraulic manipulator are not always available and reliable in practical applications, particularly the joint angular velocity measurement. Considering that it is not suitable to obtain the velocity signal directly from differentiating of position measurement, the low-pass filtering is commonly used, but it will definitely restrict the closed-loop band-width of the whole system. To avoid this problem and realize better control performance, this paper proposes a novel observer-based adaptive robust controller (obARC) for a multi-joint hydraulic manipulator subjected to both parametric uncertainties and the lack of accurate velocity measurement. Specifically, a nonlinear adaptive observer is first designed to handle the lack of velocity measurement with the consideration of parametric uncertainties. Then, the adaptive robust control is developed to compensate for the dynamic uncertainties, and the close-loop system robust stability is theoretically proved under the observation and control errors. Finally, comparative experiments are carried out to show that the designed controller can achieve a performance improvement over the traditional methods, specifically yielding better control accuracy owing to the closed-loop band-width breakthrough, which is limited by low-pass filtering in full-state-feedback control.
doi_str_mv 10.1109/JAS.2024.124209
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10500524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10500524</ieee_id><sourcerecordid>3040054170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-511b50bbf194591623072d15d8f0578450d9b0feca06ee6600cc48cf58f315583</originalsourceid><addsrcrecordid>eNpNkM9LwzAYhosoOObOXjwEPHf7kiZtc5xDnbIx8cfVkKYJZNSmJulg_70dFfH0fofnfT94kuQawxxj4Ivn5ducAKFzTCgBfpZMSEZ4yklBz__uPL9MZiHsAQATVuScTpLPXRW0P2if3smga7SsZRftQaNXV_UhohevlQ3WtWjr4ilWro3eNcgZJNG2b6JNn51tI1ofay_7xiq0la3t-kZG56-SCyOboGe_OU0-Hu7fV-t0s3t8Wi03qSIcYsowrhhUlcGcMo5zkkFBaszq0gArSsqg5hUYrSTkWuc5gFK0VIaVJsOMldk0uR13O---ex2i2Lvet8NLkQEFYBQXMFCLkVLeheC1EZ23X9IfBQZx8igGj-LkUYweh8bN2LBa6380GyYJzX4ALnNtWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040054170</pqid></control><display><type>article</type><title>Observer-Based Adaptive Robust Precision Motion Control of a Multi-Joint Hydraulic Manipulator</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Zheng ; Zhou, Shizhao ; Shen, Chong ; Lyu, Litong ; Zhang, Junhui ; Yao, Bin</creator><creatorcontrib>Chen, Zheng ; Zhou, Shizhao ; Shen, Chong ; Lyu, Litong ; Zhang, Junhui ; Yao, Bin</creatorcontrib><description>Hydraulic manipulators are usually applied in heavy-load and harsh operation tasks. However, when faced with a complex operation, the traditional proportional-integral-derivative (PID) control may not meet requirements for high control performance. Model-based full-state-feedback control is an effective alternative, but the states of a hydraulic manipulator are not always available and reliable in practical applications, particularly the joint angular velocity measurement. Considering that it is not suitable to obtain the velocity signal directly from differentiating of position measurement, the low-pass filtering is commonly used, but it will definitely restrict the closed-loop band-width of the whole system. To avoid this problem and realize better control performance, this paper proposes a novel observer-based adaptive robust controller (obARC) for a multi-joint hydraulic manipulator subjected to both parametric uncertainties and the lack of accurate velocity measurement. Specifically, a nonlinear adaptive observer is first designed to handle the lack of velocity measurement with the consideration of parametric uncertainties. Then, the adaptive robust control is developed to compensate for the dynamic uncertainties, and the close-loop system robust stability is theoretically proved under the observation and control errors. Finally, comparative experiments are carried out to show that the designed controller can achieve a performance improvement over the traditional methods, specifically yielding better control accuracy owing to the closed-loop band-width breakthrough, which is limited by low-pass filtering in full-state-feedback control.</description><identifier>ISSN: 2329-9266</identifier><identifier>EISSN: 2329-9274</identifier><identifier>DOI: 10.1109/JAS.2024.124209</identifier><identifier>CODEN: IJASJC</identifier><language>eng</language><publisher>Piscataway: Chinese Association of Automation (CAA)</publisher><subject>Adaptive control ; Angular velocity ; Closed loops ; Control systems design ; Controllers ; Dynamic stability ; Dynamics ; Feedback control ; Filtering ; Hydraulic manipulator ; Hydraulic systems ; Hydraulics ; Low pass filters ; Manipulators ; Motion control ; nonlinear adaptive observer ; Observers ; parameter adaptation ; PI control ; Position measurement ; Proportional integral derivative ; Robust control ; State feedback ; Task complexity ; Tracking ; Uncertainty ; Velocity ; Velocity measurement</subject><ispartof>IEEE/CAA journal of automatica sinica, 2024-05, Vol.11 (5), p.1213-1226</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-511b50bbf194591623072d15d8f0578450d9b0feca06ee6600cc48cf58f315583</citedby><cites>FETCH-LOGICAL-c290t-511b50bbf194591623072d15d8f0578450d9b0feca06ee6600cc48cf58f315583</cites><orcidid>0000-0002-1658-4448 ; 0000-0003-3142-4570 ; 0000-0003-0961-8758 ; 0000-0002-2459-8751 ; 0000-0001-8456-6260 ; 0000-0002-2603-2065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10500524$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10500524$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Zhou, Shizhao</creatorcontrib><creatorcontrib>Shen, Chong</creatorcontrib><creatorcontrib>Lyu, Litong</creatorcontrib><creatorcontrib>Zhang, Junhui</creatorcontrib><creatorcontrib>Yao, Bin</creatorcontrib><title>Observer-Based Adaptive Robust Precision Motion Control of a Multi-Joint Hydraulic Manipulator</title><title>IEEE/CAA journal of automatica sinica</title><addtitle>JAS</addtitle><description>Hydraulic manipulators are usually applied in heavy-load and harsh operation tasks. However, when faced with a complex operation, the traditional proportional-integral-derivative (PID) control may not meet requirements for high control performance. Model-based full-state-feedback control is an effective alternative, but the states of a hydraulic manipulator are not always available and reliable in practical applications, particularly the joint angular velocity measurement. Considering that it is not suitable to obtain the velocity signal directly from differentiating of position measurement, the low-pass filtering is commonly used, but it will definitely restrict the closed-loop band-width of the whole system. To avoid this problem and realize better control performance, this paper proposes a novel observer-based adaptive robust controller (obARC) for a multi-joint hydraulic manipulator subjected to both parametric uncertainties and the lack of accurate velocity measurement. Specifically, a nonlinear adaptive observer is first designed to handle the lack of velocity measurement with the consideration of parametric uncertainties. Then, the adaptive robust control is developed to compensate for the dynamic uncertainties, and the close-loop system robust stability is theoretically proved under the observation and control errors. Finally, comparative experiments are carried out to show that the designed controller can achieve a performance improvement over the traditional methods, specifically yielding better control accuracy owing to the closed-loop band-width breakthrough, which is limited by low-pass filtering in full-state-feedback control.</description><subject>Adaptive control</subject><subject>Angular velocity</subject><subject>Closed loops</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Dynamic stability</subject><subject>Dynamics</subject><subject>Feedback control</subject><subject>Filtering</subject><subject>Hydraulic manipulator</subject><subject>Hydraulic systems</subject><subject>Hydraulics</subject><subject>Low pass filters</subject><subject>Manipulators</subject><subject>Motion control</subject><subject>nonlinear adaptive observer</subject><subject>Observers</subject><subject>parameter adaptation</subject><subject>PI control</subject><subject>Position measurement</subject><subject>Proportional integral derivative</subject><subject>Robust control</subject><subject>State feedback</subject><subject>Task complexity</subject><subject>Tracking</subject><subject>Uncertainty</subject><subject>Velocity</subject><subject>Velocity measurement</subject><issn>2329-9266</issn><issn>2329-9274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAYhosoOObOXjwEPHf7kiZtc5xDnbIx8cfVkKYJZNSmJulg_70dFfH0fofnfT94kuQawxxj4Ivn5ducAKFzTCgBfpZMSEZ4yklBz__uPL9MZiHsAQATVuScTpLPXRW0P2if3smga7SsZRftQaNXV_UhohevlQ3WtWjr4ilWro3eNcgZJNG2b6JNn51tI1ofay_7xiq0la3t-kZG56-SCyOboGe_OU0-Hu7fV-t0s3t8Wi03qSIcYsowrhhUlcGcMo5zkkFBaszq0gArSsqg5hUYrSTkWuc5gFK0VIaVJsOMldk0uR13O---ex2i2Lvet8NLkQEFYBQXMFCLkVLeheC1EZ23X9IfBQZx8igGj-LkUYweh8bN2LBa6380GyYJzX4ALnNtWw</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Chen, Zheng</creator><creator>Zhou, Shizhao</creator><creator>Shen, Chong</creator><creator>Lyu, Litong</creator><creator>Zhang, Junhui</creator><creator>Yao, Bin</creator><general>Chinese Association of Automation (CAA)</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1658-4448</orcidid><orcidid>https://orcid.org/0000-0003-3142-4570</orcidid><orcidid>https://orcid.org/0000-0003-0961-8758</orcidid><orcidid>https://orcid.org/0000-0002-2459-8751</orcidid><orcidid>https://orcid.org/0000-0001-8456-6260</orcidid><orcidid>https://orcid.org/0000-0002-2603-2065</orcidid></search><sort><creationdate>20240501</creationdate><title>Observer-Based Adaptive Robust Precision Motion Control of a Multi-Joint Hydraulic Manipulator</title><author>Chen, Zheng ; Zhou, Shizhao ; Shen, Chong ; Lyu, Litong ; Zhang, Junhui ; Yao, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-511b50bbf194591623072d15d8f0578450d9b0feca06ee6600cc48cf58f315583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive control</topic><topic>Angular velocity</topic><topic>Closed loops</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Dynamic stability</topic><topic>Dynamics</topic><topic>Feedback control</topic><topic>Filtering</topic><topic>Hydraulic manipulator</topic><topic>Hydraulic systems</topic><topic>Hydraulics</topic><topic>Low pass filters</topic><topic>Manipulators</topic><topic>Motion control</topic><topic>nonlinear adaptive observer</topic><topic>Observers</topic><topic>parameter adaptation</topic><topic>PI control</topic><topic>Position measurement</topic><topic>Proportional integral derivative</topic><topic>Robust control</topic><topic>State feedback</topic><topic>Task complexity</topic><topic>Tracking</topic><topic>Uncertainty</topic><topic>Velocity</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Zhou, Shizhao</creatorcontrib><creatorcontrib>Shen, Chong</creatorcontrib><creatorcontrib>Lyu, Litong</creatorcontrib><creatorcontrib>Zhang, Junhui</creatorcontrib><creatorcontrib>Yao, Bin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/CAA journal of automatica sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Zheng</au><au>Zhou, Shizhao</au><au>Shen, Chong</au><au>Lyu, Litong</au><au>Zhang, Junhui</au><au>Yao, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observer-Based Adaptive Robust Precision Motion Control of a Multi-Joint Hydraulic Manipulator</atitle><jtitle>IEEE/CAA journal of automatica sinica</jtitle><stitle>JAS</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>11</volume><issue>5</issue><spage>1213</spage><epage>1226</epage><pages>1213-1226</pages><issn>2329-9266</issn><eissn>2329-9274</eissn><coden>IJASJC</coden><abstract>Hydraulic manipulators are usually applied in heavy-load and harsh operation tasks. However, when faced with a complex operation, the traditional proportional-integral-derivative (PID) control may not meet requirements for high control performance. Model-based full-state-feedback control is an effective alternative, but the states of a hydraulic manipulator are not always available and reliable in practical applications, particularly the joint angular velocity measurement. Considering that it is not suitable to obtain the velocity signal directly from differentiating of position measurement, the low-pass filtering is commonly used, but it will definitely restrict the closed-loop band-width of the whole system. To avoid this problem and realize better control performance, this paper proposes a novel observer-based adaptive robust controller (obARC) for a multi-joint hydraulic manipulator subjected to both parametric uncertainties and the lack of accurate velocity measurement. Specifically, a nonlinear adaptive observer is first designed to handle the lack of velocity measurement with the consideration of parametric uncertainties. Then, the adaptive robust control is developed to compensate for the dynamic uncertainties, and the close-loop system robust stability is theoretically proved under the observation and control errors. Finally, comparative experiments are carried out to show that the designed controller can achieve a performance improvement over the traditional methods, specifically yielding better control accuracy owing to the closed-loop band-width breakthrough, which is limited by low-pass filtering in full-state-feedback control.</abstract><cop>Piscataway</cop><pub>Chinese Association of Automation (CAA)</pub><doi>10.1109/JAS.2024.124209</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1658-4448</orcidid><orcidid>https://orcid.org/0000-0003-3142-4570</orcidid><orcidid>https://orcid.org/0000-0003-0961-8758</orcidid><orcidid>https://orcid.org/0000-0002-2459-8751</orcidid><orcidid>https://orcid.org/0000-0001-8456-6260</orcidid><orcidid>https://orcid.org/0000-0002-2603-2065</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2329-9266
ispartof IEEE/CAA journal of automatica sinica, 2024-05, Vol.11 (5), p.1213-1226
issn 2329-9266
2329-9274
language eng
recordid cdi_ieee_primary_10500524
source IEEE Electronic Library (IEL)
subjects Adaptive control
Angular velocity
Closed loops
Control systems design
Controllers
Dynamic stability
Dynamics
Feedback control
Filtering
Hydraulic manipulator
Hydraulic systems
Hydraulics
Low pass filters
Manipulators
Motion control
nonlinear adaptive observer
Observers
parameter adaptation
PI control
Position measurement
Proportional integral derivative
Robust control
State feedback
Task complexity
Tracking
Uncertainty
Velocity
Velocity measurement
title Observer-Based Adaptive Robust Precision Motion Control of a Multi-Joint Hydraulic Manipulator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A15%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observer-Based%20Adaptive%20Robust%20Precision%20Motion%20Control%20of%20a%20Multi-Joint%20Hydraulic%20Manipulator&rft.jtitle=IEEE/CAA%20journal%20of%20automatica%20sinica&rft.au=Chen,%20Zheng&rft.date=2024-05-01&rft.volume=11&rft.issue=5&rft.spage=1213&rft.epage=1226&rft.pages=1213-1226&rft.issn=2329-9266&rft.eissn=2329-9274&rft.coden=IJASJC&rft_id=info:doi/10.1109/JAS.2024.124209&rft_dat=%3Cproquest_RIE%3E3040054170%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040054170&rft_id=info:pmid/&rft_ieee_id=10500524&rfr_iscdi=true