Adhesion Testing System Based on Convolutional Neural Networks for Quality Inspection of Flexible Strain Sensors

Manufacturing reliable strain sensors based on nanostructured materials faces several challenges, such as ensuring quality inspection of the adhesion between the active sensor and its substrate. In order to overcome this, the use of a deep learning-based technique is proposed herein to determine the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2024-07, Vol.20 (7), p.9235-9243
Hauptverfasser: Isaac Medina, Ignacio, Arana, Gabriel, Castillo Atoche, Andrea Cecilia, Estrada Lopez, Johan Jair, Vazquez Castillo, Javier, Aviles, Francis, Castillo Atoche, Alejandro Arturo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9243
container_issue 7
container_start_page 9235
container_title IEEE transactions on industrial informatics
container_volume 20
creator Isaac Medina, Ignacio
Arana, Gabriel
Castillo Atoche, Andrea Cecilia
Estrada Lopez, Johan Jair
Vazquez Castillo, Javier
Aviles, Francis
Castillo Atoche, Alejandro Arturo
description Manufacturing reliable strain sensors based on nanostructured materials faces several challenges, such as ensuring quality inspection of the adhesion between the active sensor and its substrate. In order to overcome this, the use of a deep learning-based technique is proposed herein to determine the in-situ adhesion strength. This study conducts an adhesion strength analysis between carbon nanotubes (CNTs) over a polymeric substrate (as components of a strain sensor), using image analysis. In line with the edge-computing paradigm, a novel inspection system is presented. An embedded processor equipped with a convolutional neural network architecture is used to inspect the CNT adhesion deposited on a substrate surface using deep learning semantic segmentation. This determines the relative concentration of CNTs covering the peeled area and its spatial probabilistic distribution map. Experimental results demonstrate the quality inspection precision, both before and after peeling-tape tests with an accuracy of up to 96.56%.
doi_str_mv 10.1109/TII.2024.3383547
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10499719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10499719</ieee_id><sourcerecordid>3075426485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-b4f59563d8a8fcb61000350ab6f8b6da66d62621181d5c647d6dc81476983dbc3</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EEqWwMzBYYk6x44_YY6koRKpAqGW2nNiBlDQOdlLof49LOzC90-n3TvceANcYTTBG8m6V55MUpXRCiCCMZidghCXFCUIMncaZMZyQFJFzcBHCGiGSISJHoJuaDxtq18KVDX3dvsPlLvR2A-91sAbG_cy1W9cMfWR0A5_t4P-k_3b-M8DKefg66KbudzBvQ2fLPQhdBeeN_amLxsJl73XdwqVtg_PhEpxVugn26qhj8DZ_WM2eksXLYz6bLpIypaxPCloxyTgxQouqLDhG8WWGdMErUXCjOTc85SnGAhtWcpoZbkqBacalIKYoyRjcHu523n0NMZtau8HHCEERlDGacipYpNCBKr0LwdtKdb7eaL9TGKl9ryr2qva9qmOv0XJzsNTW2n84lTLDkvwCFAp0zQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075426485</pqid></control><display><type>article</type><title>Adhesion Testing System Based on Convolutional Neural Networks for Quality Inspection of Flexible Strain Sensors</title><source>IEEE Electronic Library (IEL)</source><creator>Isaac Medina, Ignacio ; Arana, Gabriel ; Castillo Atoche, Andrea Cecilia ; Estrada Lopez, Johan Jair ; Vazquez Castillo, Javier ; Aviles, Francis ; Castillo Atoche, Alejandro Arturo</creator><creatorcontrib>Isaac Medina, Ignacio ; Arana, Gabriel ; Castillo Atoche, Andrea Cecilia ; Estrada Lopez, Johan Jair ; Vazquez Castillo, Javier ; Aviles, Francis ; Castillo Atoche, Alejandro Arturo</creatorcontrib><description>Manufacturing reliable strain sensors based on nanostructured materials faces several challenges, such as ensuring quality inspection of the adhesion between the active sensor and its substrate. In order to overcome this, the use of a deep learning-based technique is proposed herein to determine the in-situ adhesion strength. This study conducts an adhesion strength analysis between carbon nanotubes (CNTs) over a polymeric substrate (as components of a strain sensor), using image analysis. In line with the edge-computing paradigm, a novel inspection system is presented. An embedded processor equipped with a convolutional neural network architecture is used to inspect the CNT adhesion deposited on a substrate surface using deep learning semantic segmentation. This determines the relative concentration of CNTs covering the peeled area and its spatial probabilistic distribution map. Experimental results demonstrate the quality inspection precision, both before and after peeling-tape tests with an accuracy of up to 96.56%.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2024.3383547</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adhesion quality inspection ; Adhesion tests ; Adhesive strength ; Adhesives ; Artificial neural networks ; Capacitive sensors ; Carbon nanotubes ; Computer architecture ; convolutional neural network (CNN) ; Deep learning ; Edge computing ; Effectiveness ; flexible strain sensor ; Image analysis ; Inspection ; Microprocessors ; Nanostructured materials ; Semantic segmentation ; Sensors ; Substrates ; Testing</subject><ispartof>IEEE transactions on industrial informatics, 2024-07, Vol.20 (7), p.9235-9243</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-b4f59563d8a8fcb61000350ab6f8b6da66d62621181d5c647d6dc81476983dbc3</cites><orcidid>0000-0003-0440-5796 ; 0009-0007-4592-8135 ; 0000-0002-0227-1758 ; 0000-0001-9489-6386 ; 0000-0002-0465-8948 ; 0000-0002-0956-5994 ; 0000-0002-6064-0371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10499719$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10499719$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Isaac Medina, Ignacio</creatorcontrib><creatorcontrib>Arana, Gabriel</creatorcontrib><creatorcontrib>Castillo Atoche, Andrea Cecilia</creatorcontrib><creatorcontrib>Estrada Lopez, Johan Jair</creatorcontrib><creatorcontrib>Vazquez Castillo, Javier</creatorcontrib><creatorcontrib>Aviles, Francis</creatorcontrib><creatorcontrib>Castillo Atoche, Alejandro Arturo</creatorcontrib><title>Adhesion Testing System Based on Convolutional Neural Networks for Quality Inspection of Flexible Strain Sensors</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Manufacturing reliable strain sensors based on nanostructured materials faces several challenges, such as ensuring quality inspection of the adhesion between the active sensor and its substrate. In order to overcome this, the use of a deep learning-based technique is proposed herein to determine the in-situ adhesion strength. This study conducts an adhesion strength analysis between carbon nanotubes (CNTs) over a polymeric substrate (as components of a strain sensor), using image analysis. In line with the edge-computing paradigm, a novel inspection system is presented. An embedded processor equipped with a convolutional neural network architecture is used to inspect the CNT adhesion deposited on a substrate surface using deep learning semantic segmentation. This determines the relative concentration of CNTs covering the peeled area and its spatial probabilistic distribution map. Experimental results demonstrate the quality inspection precision, both before and after peeling-tape tests with an accuracy of up to 96.56%.</description><subject>Adhesion quality inspection</subject><subject>Adhesion tests</subject><subject>Adhesive strength</subject><subject>Adhesives</subject><subject>Artificial neural networks</subject><subject>Capacitive sensors</subject><subject>Carbon nanotubes</subject><subject>Computer architecture</subject><subject>convolutional neural network (CNN)</subject><subject>Deep learning</subject><subject>Edge computing</subject><subject>Effectiveness</subject><subject>flexible strain sensor</subject><subject>Image analysis</subject><subject>Inspection</subject><subject>Microprocessors</subject><subject>Nanostructured materials</subject><subject>Semantic segmentation</subject><subject>Sensors</subject><subject>Substrates</subject><subject>Testing</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAQxS0EEqWwMzBYYk6x44_YY6koRKpAqGW2nNiBlDQOdlLof49LOzC90-n3TvceANcYTTBG8m6V55MUpXRCiCCMZidghCXFCUIMncaZMZyQFJFzcBHCGiGSISJHoJuaDxtq18KVDX3dvsPlLvR2A-91sAbG_cy1W9cMfWR0A5_t4P-k_3b-M8DKefg66KbudzBvQ2fLPQhdBeeN_amLxsJl73XdwqVtg_PhEpxVugn26qhj8DZ_WM2eksXLYz6bLpIypaxPCloxyTgxQouqLDhG8WWGdMErUXCjOTc85SnGAhtWcpoZbkqBacalIKYoyRjcHu523n0NMZtau8HHCEERlDGacipYpNCBKr0LwdtKdb7eaL9TGKl9ryr2qva9qmOv0XJzsNTW2n84lTLDkvwCFAp0zQ</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Isaac Medina, Ignacio</creator><creator>Arana, Gabriel</creator><creator>Castillo Atoche, Andrea Cecilia</creator><creator>Estrada Lopez, Johan Jair</creator><creator>Vazquez Castillo, Javier</creator><creator>Aviles, Francis</creator><creator>Castillo Atoche, Alejandro Arturo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0440-5796</orcidid><orcidid>https://orcid.org/0009-0007-4592-8135</orcidid><orcidid>https://orcid.org/0000-0002-0227-1758</orcidid><orcidid>https://orcid.org/0000-0001-9489-6386</orcidid><orcidid>https://orcid.org/0000-0002-0465-8948</orcidid><orcidid>https://orcid.org/0000-0002-0956-5994</orcidid><orcidid>https://orcid.org/0000-0002-6064-0371</orcidid></search><sort><creationdate>20240701</creationdate><title>Adhesion Testing System Based on Convolutional Neural Networks for Quality Inspection of Flexible Strain Sensors</title><author>Isaac Medina, Ignacio ; Arana, Gabriel ; Castillo Atoche, Andrea Cecilia ; Estrada Lopez, Johan Jair ; Vazquez Castillo, Javier ; Aviles, Francis ; Castillo Atoche, Alejandro Arturo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-b4f59563d8a8fcb61000350ab6f8b6da66d62621181d5c647d6dc81476983dbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adhesion quality inspection</topic><topic>Adhesion tests</topic><topic>Adhesive strength</topic><topic>Adhesives</topic><topic>Artificial neural networks</topic><topic>Capacitive sensors</topic><topic>Carbon nanotubes</topic><topic>Computer architecture</topic><topic>convolutional neural network (CNN)</topic><topic>Deep learning</topic><topic>Edge computing</topic><topic>Effectiveness</topic><topic>flexible strain sensor</topic><topic>Image analysis</topic><topic>Inspection</topic><topic>Microprocessors</topic><topic>Nanostructured materials</topic><topic>Semantic segmentation</topic><topic>Sensors</topic><topic>Substrates</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Isaac Medina, Ignacio</creatorcontrib><creatorcontrib>Arana, Gabriel</creatorcontrib><creatorcontrib>Castillo Atoche, Andrea Cecilia</creatorcontrib><creatorcontrib>Estrada Lopez, Johan Jair</creatorcontrib><creatorcontrib>Vazquez Castillo, Javier</creatorcontrib><creatorcontrib>Aviles, Francis</creatorcontrib><creatorcontrib>Castillo Atoche, Alejandro Arturo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Isaac Medina, Ignacio</au><au>Arana, Gabriel</au><au>Castillo Atoche, Andrea Cecilia</au><au>Estrada Lopez, Johan Jair</au><au>Vazquez Castillo, Javier</au><au>Aviles, Francis</au><au>Castillo Atoche, Alejandro Arturo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adhesion Testing System Based on Convolutional Neural Networks for Quality Inspection of Flexible Strain Sensors</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>20</volume><issue>7</issue><spage>9235</spage><epage>9243</epage><pages>9235-9243</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Manufacturing reliable strain sensors based on nanostructured materials faces several challenges, such as ensuring quality inspection of the adhesion between the active sensor and its substrate. In order to overcome this, the use of a deep learning-based technique is proposed herein to determine the in-situ adhesion strength. This study conducts an adhesion strength analysis between carbon nanotubes (CNTs) over a polymeric substrate (as components of a strain sensor), using image analysis. In line with the edge-computing paradigm, a novel inspection system is presented. An embedded processor equipped with a convolutional neural network architecture is used to inspect the CNT adhesion deposited on a substrate surface using deep learning semantic segmentation. This determines the relative concentration of CNTs covering the peeled area and its spatial probabilistic distribution map. Experimental results demonstrate the quality inspection precision, both before and after peeling-tape tests with an accuracy of up to 96.56%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2024.3383547</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0440-5796</orcidid><orcidid>https://orcid.org/0009-0007-4592-8135</orcidid><orcidid>https://orcid.org/0000-0002-0227-1758</orcidid><orcidid>https://orcid.org/0000-0001-9489-6386</orcidid><orcidid>https://orcid.org/0000-0002-0465-8948</orcidid><orcidid>https://orcid.org/0000-0002-0956-5994</orcidid><orcidid>https://orcid.org/0000-0002-6064-0371</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2024-07, Vol.20 (7), p.9235-9243
issn 1551-3203
1941-0050
language eng
recordid cdi_ieee_primary_10499719
source IEEE Electronic Library (IEL)
subjects Adhesion quality inspection
Adhesion tests
Adhesive strength
Adhesives
Artificial neural networks
Capacitive sensors
Carbon nanotubes
Computer architecture
convolutional neural network (CNN)
Deep learning
Edge computing
Effectiveness
flexible strain sensor
Image analysis
Inspection
Microprocessors
Nanostructured materials
Semantic segmentation
Sensors
Substrates
Testing
title Adhesion Testing System Based on Convolutional Neural Networks for Quality Inspection of Flexible Strain Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A56%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adhesion%20Testing%20System%20Based%20on%20Convolutional%20Neural%20Networks%20for%20Quality%20Inspection%20of%20Flexible%20Strain%20Sensors&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Isaac%20Medina,%20Ignacio&rft.date=2024-07-01&rft.volume=20&rft.issue=7&rft.spage=9235&rft.epage=9243&rft.pages=9235-9243&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2024.3383547&rft_dat=%3Cproquest_RIE%3E3075426485%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075426485&rft_id=info:pmid/&rft_ieee_id=10499719&rfr_iscdi=true