3D Multimodal Fusion Network With Disease-Induced Joint Learning for Early Alzheimer's Disease Diagnosis

Multimodal neuroimaging provides complementary information critical for accurate early diagnosis of Alzheimer's disease (AD). However, the inherent variability between multimodal neuroimages hinders the effective fusion of multimodal features. Moreover, achieving reliable and interpretable diag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2024-09, Vol.43 (9), p.3161-3175
Hauptverfasser: Qiu, Zifeng, Yang, Peng, Xiao, Chunlun, Wang, Shuqiang, Xiao, Xiaohua, Qin, Jing, Liu, Chuan-Ming, Wang, Tianfu, Lei, Baiying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3175
container_issue 9
container_start_page 3161
container_title IEEE transactions on medical imaging
container_volume 43
creator Qiu, Zifeng
Yang, Peng
Xiao, Chunlun
Wang, Shuqiang
Xiao, Xiaohua
Qin, Jing
Liu, Chuan-Ming
Wang, Tianfu
Lei, Baiying
description Multimodal neuroimaging provides complementary information critical for accurate early diagnosis of Alzheimer's disease (AD). However, the inherent variability between multimodal neuroimages hinders the effective fusion of multimodal features. Moreover, achieving reliable and interpretable diagnoses in the field of multimodal fusion remains challenging. To address them, we propose a novel multimodal diagnosis network based on multi-fusion and disease-induced learning (MDL-Net) to enhance early AD diagnosis by efficiently fusing multimodal data. Specifically, MDL-Net proposes a multi-fusion joint learning (MJL) module, which effectively fuses multimodal features and enhances the feature representation from global, local, and latent learning perspectives. MJL consists of three modules, global-aware learning (GAL), local-aware learning (LAL), and outer latent-space learning (LSL) modules. GAL via a self-adaptive Transformer (SAT) learns the global relationships among the modalities. LAL constructs local-aware convolution to learn the local associations. LSL module introduces latent information through outer product operation to further enhance feature representation. MDL-Net integrates the disease-induced region-aware learning (DRL) module via gradient weight to enhance interpretability, which iteratively learns weight matrices to identify AD-related brain regions. We conduct the extensive experiments on public datasets and the results confirm the superiority of our proposed method. Our code will be available at: https://github.com/qzf0320/MDL-Net .
doi_str_mv 10.1109/TMI.2024.3386937
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10498133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10498133</ieee_id><sourcerecordid>3038438240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-cefaf6f86ccbe5b20349a188c6c4e36adf2d17f3c44dc5c0a850d70be8f6dc1e3</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0EgvLYGRDyBkvKdewkzojKq6jAAoItcu1rakhisBMh-PUEtSCmIx195wwfIfsMxoxBeXJ_Mx2nkIox5zIvebFGRizLZJJm4mmdjCAtZAKQp1tkO8YXACYyKDfJ1kBDUUA-Igt-Rm_6unONN6qmF310vqW32H348EofXbegZy6iiphMW9NrNPTau7ajM1Shde0ztT7QcxXqT3pafy3QNRiO4u9oSPXc-ujiLtmwqo64t8od8nBxfj-5SmZ3l9PJ6SzRKfAu0WiVza3MtZ5jNh86USompc61QJ4rY1PDCsu1EEZnGpTMwBQwR2lzoxnyHXK8_H0L_r3H2FWNixrrWrXo-1hx4FJwmQoYUFiiOvgYA9rqLbhGhc-KQfXjtxr8Vj9-q5XfYXK4eu_nDZq_wa_QAThYAg4R__2JUjLO-Tcr-IA9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3038438240</pqid></control><display><type>article</type><title>3D Multimodal Fusion Network With Disease-Induced Joint Learning for Early Alzheimer's Disease Diagnosis</title><source>IEEE Electronic Library (IEL)</source><creator>Qiu, Zifeng ; Yang, Peng ; Xiao, Chunlun ; Wang, Shuqiang ; Xiao, Xiaohua ; Qin, Jing ; Liu, Chuan-Ming ; Wang, Tianfu ; Lei, Baiying</creator><creatorcontrib>Qiu, Zifeng ; Yang, Peng ; Xiao, Chunlun ; Wang, Shuqiang ; Xiao, Xiaohua ; Qin, Jing ; Liu, Chuan-Ming ; Wang, Tianfu ; Lei, Baiying</creatorcontrib><description>Multimodal neuroimaging provides complementary information critical for accurate early diagnosis of Alzheimer's disease (AD). However, the inherent variability between multimodal neuroimages hinders the effective fusion of multimodal features. Moreover, achieving reliable and interpretable diagnoses in the field of multimodal fusion remains challenging. To address them, we propose a novel multimodal diagnosis network based on multi-fusion and disease-induced learning (MDL-Net) to enhance early AD diagnosis by efficiently fusing multimodal data. Specifically, MDL-Net proposes a multi-fusion joint learning (MJL) module, which effectively fuses multimodal features and enhances the feature representation from global, local, and latent learning perspectives. MJL consists of three modules, global-aware learning (GAL), local-aware learning (LAL), and outer latent-space learning (LSL) modules. GAL via a self-adaptive Transformer (SAT) learns the global relationships among the modalities. LAL constructs local-aware convolution to learn the local associations. LSL module introduces latent information through outer product operation to further enhance feature representation. MDL-Net integrates the disease-induced region-aware learning (DRL) module via gradient weight to enhance interpretability, which iteratively learns weight matrices to identify AD-related brain regions. We conduct the extensive experiments on public datasets and the results confirm the superiority of our proposed method. Our code will be available at: https://github.com/qzf0320/MDL-Net .</description><identifier>ISSN: 0278-0062</identifier><identifier>ISSN: 1558-254X</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2024.3386937</identifier><identifier>PMID: 38607706</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>3D multimodal fusion network ; Algorithms ; Alzheimer Disease - diagnostic imaging ; Alzheimer’s disease diagnosis ; Brain - diagnostic imaging ; Brain modeling ; Deep learning ; disease-induced joint learning ; Early Diagnosis ; Feature extraction ; Fuses ; Humans ; Image Interpretation, Computer-Assisted - methods ; Imaging ; Imaging, Three-Dimensional - methods ; interpretability ; Machine Learning ; Magnetic Resonance Imaging - methods ; Multimodal Imaging - methods ; Neuroimaging ; Neuroimaging - methods ; Three-dimensional displays</subject><ispartof>IEEE transactions on medical imaging, 2024-09, Vol.43 (9), p.3161-3175</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c203t-cefaf6f86ccbe5b20349a188c6c4e36adf2d17f3c44dc5c0a850d70be8f6dc1e3</cites><orcidid>0000-0003-2781-6109 ; 0000-0003-1119-320X ; 0000-0002-3087-2550 ; 0000-0002-1248-1214 ; 0000-0002-2961-0860 ; 0000-0001-9005-5715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10498133$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10498133$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38607706$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiu, Zifeng</creatorcontrib><creatorcontrib>Yang, Peng</creatorcontrib><creatorcontrib>Xiao, Chunlun</creatorcontrib><creatorcontrib>Wang, Shuqiang</creatorcontrib><creatorcontrib>Xiao, Xiaohua</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><creatorcontrib>Liu, Chuan-Ming</creatorcontrib><creatorcontrib>Wang, Tianfu</creatorcontrib><creatorcontrib>Lei, Baiying</creatorcontrib><title>3D Multimodal Fusion Network With Disease-Induced Joint Learning for Early Alzheimer's Disease Diagnosis</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Multimodal neuroimaging provides complementary information critical for accurate early diagnosis of Alzheimer's disease (AD). However, the inherent variability between multimodal neuroimages hinders the effective fusion of multimodal features. Moreover, achieving reliable and interpretable diagnoses in the field of multimodal fusion remains challenging. To address them, we propose a novel multimodal diagnosis network based on multi-fusion and disease-induced learning (MDL-Net) to enhance early AD diagnosis by efficiently fusing multimodal data. Specifically, MDL-Net proposes a multi-fusion joint learning (MJL) module, which effectively fuses multimodal features and enhances the feature representation from global, local, and latent learning perspectives. MJL consists of three modules, global-aware learning (GAL), local-aware learning (LAL), and outer latent-space learning (LSL) modules. GAL via a self-adaptive Transformer (SAT) learns the global relationships among the modalities. LAL constructs local-aware convolution to learn the local associations. LSL module introduces latent information through outer product operation to further enhance feature representation. MDL-Net integrates the disease-induced region-aware learning (DRL) module via gradient weight to enhance interpretability, which iteratively learns weight matrices to identify AD-related brain regions. We conduct the extensive experiments on public datasets and the results confirm the superiority of our proposed method. Our code will be available at: https://github.com/qzf0320/MDL-Net .</description><subject>3D multimodal fusion network</subject><subject>Algorithms</subject><subject>Alzheimer Disease - diagnostic imaging</subject><subject>Alzheimer’s disease diagnosis</subject><subject>Brain - diagnostic imaging</subject><subject>Brain modeling</subject><subject>Deep learning</subject><subject>disease-induced joint learning</subject><subject>Early Diagnosis</subject><subject>Feature extraction</subject><subject>Fuses</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>interpretability</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Multimodal Imaging - methods</subject><subject>Neuroimaging</subject><subject>Neuroimaging - methods</subject><subject>Three-dimensional displays</subject><issn>0278-0062</issn><issn>1558-254X</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpNkDtPwzAUhS0EgvLYGRDyBkvKdewkzojKq6jAAoItcu1rakhisBMh-PUEtSCmIx195wwfIfsMxoxBeXJ_Mx2nkIox5zIvebFGRizLZJJm4mmdjCAtZAKQp1tkO8YXACYyKDfJ1kBDUUA-Igt-Rm_6unONN6qmF310vqW32H348EofXbegZy6iiphMW9NrNPTau7ajM1Shde0ztT7QcxXqT3pafy3QNRiO4u9oSPXc-ujiLtmwqo64t8od8nBxfj-5SmZ3l9PJ6SzRKfAu0WiVza3MtZ5jNh86USompc61QJ4rY1PDCsu1EEZnGpTMwBQwR2lzoxnyHXK8_H0L_r3H2FWNixrrWrXo-1hx4FJwmQoYUFiiOvgYA9rqLbhGhc-KQfXjtxr8Vj9-q5XfYXK4eu_nDZq_wa_QAThYAg4R__2JUjLO-Tcr-IA9</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Qiu, Zifeng</creator><creator>Yang, Peng</creator><creator>Xiao, Chunlun</creator><creator>Wang, Shuqiang</creator><creator>Xiao, Xiaohua</creator><creator>Qin, Jing</creator><creator>Liu, Chuan-Ming</creator><creator>Wang, Tianfu</creator><creator>Lei, Baiying</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2781-6109</orcidid><orcidid>https://orcid.org/0000-0003-1119-320X</orcidid><orcidid>https://orcid.org/0000-0002-3087-2550</orcidid><orcidid>https://orcid.org/0000-0002-1248-1214</orcidid><orcidid>https://orcid.org/0000-0002-2961-0860</orcidid><orcidid>https://orcid.org/0000-0001-9005-5715</orcidid></search><sort><creationdate>202409</creationdate><title>3D Multimodal Fusion Network With Disease-Induced Joint Learning for Early Alzheimer's Disease Diagnosis</title><author>Qiu, Zifeng ; Yang, Peng ; Xiao, Chunlun ; Wang, Shuqiang ; Xiao, Xiaohua ; Qin, Jing ; Liu, Chuan-Ming ; Wang, Tianfu ; Lei, Baiying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-cefaf6f86ccbe5b20349a188c6c4e36adf2d17f3c44dc5c0a850d70be8f6dc1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D multimodal fusion network</topic><topic>Algorithms</topic><topic>Alzheimer Disease - diagnostic imaging</topic><topic>Alzheimer’s disease diagnosis</topic><topic>Brain - diagnostic imaging</topic><topic>Brain modeling</topic><topic>Deep learning</topic><topic>disease-induced joint learning</topic><topic>Early Diagnosis</topic><topic>Feature extraction</topic><topic>Fuses</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>interpretability</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Multimodal Imaging - methods</topic><topic>Neuroimaging</topic><topic>Neuroimaging - methods</topic><topic>Three-dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Zifeng</creatorcontrib><creatorcontrib>Yang, Peng</creatorcontrib><creatorcontrib>Xiao, Chunlun</creatorcontrib><creatorcontrib>Wang, Shuqiang</creatorcontrib><creatorcontrib>Xiao, Xiaohua</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><creatorcontrib>Liu, Chuan-Ming</creatorcontrib><creatorcontrib>Wang, Tianfu</creatorcontrib><creatorcontrib>Lei, Baiying</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qiu, Zifeng</au><au>Yang, Peng</au><au>Xiao, Chunlun</au><au>Wang, Shuqiang</au><au>Xiao, Xiaohua</au><au>Qin, Jing</au><au>Liu, Chuan-Ming</au><au>Wang, Tianfu</au><au>Lei, Baiying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Multimodal Fusion Network With Disease-Induced Joint Learning for Early Alzheimer's Disease Diagnosis</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2024-09</date><risdate>2024</risdate><volume>43</volume><issue>9</issue><spage>3161</spage><epage>3175</epage><pages>3161-3175</pages><issn>0278-0062</issn><issn>1558-254X</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Multimodal neuroimaging provides complementary information critical for accurate early diagnosis of Alzheimer's disease (AD). However, the inherent variability between multimodal neuroimages hinders the effective fusion of multimodal features. Moreover, achieving reliable and interpretable diagnoses in the field of multimodal fusion remains challenging. To address them, we propose a novel multimodal diagnosis network based on multi-fusion and disease-induced learning (MDL-Net) to enhance early AD diagnosis by efficiently fusing multimodal data. Specifically, MDL-Net proposes a multi-fusion joint learning (MJL) module, which effectively fuses multimodal features and enhances the feature representation from global, local, and latent learning perspectives. MJL consists of three modules, global-aware learning (GAL), local-aware learning (LAL), and outer latent-space learning (LSL) modules. GAL via a self-adaptive Transformer (SAT) learns the global relationships among the modalities. LAL constructs local-aware convolution to learn the local associations. LSL module introduces latent information through outer product operation to further enhance feature representation. MDL-Net integrates the disease-induced region-aware learning (DRL) module via gradient weight to enhance interpretability, which iteratively learns weight matrices to identify AD-related brain regions. We conduct the extensive experiments on public datasets and the results confirm the superiority of our proposed method. Our code will be available at: https://github.com/qzf0320/MDL-Net .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38607706</pmid><doi>10.1109/TMI.2024.3386937</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2781-6109</orcidid><orcidid>https://orcid.org/0000-0003-1119-320X</orcidid><orcidid>https://orcid.org/0000-0002-3087-2550</orcidid><orcidid>https://orcid.org/0000-0002-1248-1214</orcidid><orcidid>https://orcid.org/0000-0002-2961-0860</orcidid><orcidid>https://orcid.org/0000-0001-9005-5715</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2024-09, Vol.43 (9), p.3161-3175
issn 0278-0062
1558-254X
1558-254X
language eng
recordid cdi_ieee_primary_10498133
source IEEE Electronic Library (IEL)
subjects 3D multimodal fusion network
Algorithms
Alzheimer Disease - diagnostic imaging
Alzheimer’s disease diagnosis
Brain - diagnostic imaging
Brain modeling
Deep learning
disease-induced joint learning
Early Diagnosis
Feature extraction
Fuses
Humans
Image Interpretation, Computer-Assisted - methods
Imaging
Imaging, Three-Dimensional - methods
interpretability
Machine Learning
Magnetic Resonance Imaging - methods
Multimodal Imaging - methods
Neuroimaging
Neuroimaging - methods
Three-dimensional displays
title 3D Multimodal Fusion Network With Disease-Induced Joint Learning for Early Alzheimer's Disease Diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A05%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Multimodal%20Fusion%20Network%20With%20Disease-Induced%20Joint%20Learning%20for%20Early%20Alzheimer's%20Disease%20Diagnosis&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Qiu,%20Zifeng&rft.date=2024-09&rft.volume=43&rft.issue=9&rft.spage=3161&rft.epage=3175&rft.pages=3161-3175&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2024.3386937&rft_dat=%3Cproquest_RIE%3E3038438240%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3038438240&rft_id=info:pmid/38607706&rft_ieee_id=10498133&rfr_iscdi=true