3D Multimodal Fusion Network With Disease-Induced Joint Learning for Early Alzheimer's Disease Diagnosis
Multimodal neuroimaging provides complementary information critical for accurate early diagnosis of Alzheimer's disease (AD). However, the inherent variability between multimodal neuroimages hinders the effective fusion of multimodal features. Moreover, achieving reliable and interpretable diag...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2024-09, Vol.43 (9), p.3161-3175 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3175 |
---|---|
container_issue | 9 |
container_start_page | 3161 |
container_title | IEEE transactions on medical imaging |
container_volume | 43 |
creator | Qiu, Zifeng Yang, Peng Xiao, Chunlun Wang, Shuqiang Xiao, Xiaohua Qin, Jing Liu, Chuan-Ming Wang, Tianfu Lei, Baiying |
description | Multimodal neuroimaging provides complementary information critical for accurate early diagnosis of Alzheimer's disease (AD). However, the inherent variability between multimodal neuroimages hinders the effective fusion of multimodal features. Moreover, achieving reliable and interpretable diagnoses in the field of multimodal fusion remains challenging. To address them, we propose a novel multimodal diagnosis network based on multi-fusion and disease-induced learning (MDL-Net) to enhance early AD diagnosis by efficiently fusing multimodal data. Specifically, MDL-Net proposes a multi-fusion joint learning (MJL) module, which effectively fuses multimodal features and enhances the feature representation from global, local, and latent learning perspectives. MJL consists of three modules, global-aware learning (GAL), local-aware learning (LAL), and outer latent-space learning (LSL) modules. GAL via a self-adaptive Transformer (SAT) learns the global relationships among the modalities. LAL constructs local-aware convolution to learn the local associations. LSL module introduces latent information through outer product operation to further enhance feature representation. MDL-Net integrates the disease-induced region-aware learning (DRL) module via gradient weight to enhance interpretability, which iteratively learns weight matrices to identify AD-related brain regions. We conduct the extensive experiments on public datasets and the results confirm the superiority of our proposed method. Our code will be available at: https://github.com/qzf0320/MDL-Net . |
doi_str_mv | 10.1109/TMI.2024.3386937 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10498133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10498133</ieee_id><sourcerecordid>3038438240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-cefaf6f86ccbe5b20349a188c6c4e36adf2d17f3c44dc5c0a850d70be8f6dc1e3</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0EgvLYGRDyBkvKdewkzojKq6jAAoItcu1rakhisBMh-PUEtSCmIx195wwfIfsMxoxBeXJ_Mx2nkIox5zIvebFGRizLZJJm4mmdjCAtZAKQp1tkO8YXACYyKDfJ1kBDUUA-Igt-Rm_6unONN6qmF310vqW32H348EofXbegZy6iiphMW9NrNPTau7ajM1Shde0ztT7QcxXqT3pafy3QNRiO4u9oSPXc-ujiLtmwqo64t8od8nBxfj-5SmZ3l9PJ6SzRKfAu0WiVza3MtZ5jNh86USompc61QJ4rY1PDCsu1EEZnGpTMwBQwR2lzoxnyHXK8_H0L_r3H2FWNixrrWrXo-1hx4FJwmQoYUFiiOvgYA9rqLbhGhc-KQfXjtxr8Vj9-q5XfYXK4eu_nDZq_wa_QAThYAg4R__2JUjLO-Tcr-IA9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3038438240</pqid></control><display><type>article</type><title>3D Multimodal Fusion Network With Disease-Induced Joint Learning for Early Alzheimer's Disease Diagnosis</title><source>IEEE Electronic Library (IEL)</source><creator>Qiu, Zifeng ; Yang, Peng ; Xiao, Chunlun ; Wang, Shuqiang ; Xiao, Xiaohua ; Qin, Jing ; Liu, Chuan-Ming ; Wang, Tianfu ; Lei, Baiying</creator><creatorcontrib>Qiu, Zifeng ; Yang, Peng ; Xiao, Chunlun ; Wang, Shuqiang ; Xiao, Xiaohua ; Qin, Jing ; Liu, Chuan-Ming ; Wang, Tianfu ; Lei, Baiying</creatorcontrib><description>Multimodal neuroimaging provides complementary information critical for accurate early diagnosis of Alzheimer's disease (AD). However, the inherent variability between multimodal neuroimages hinders the effective fusion of multimodal features. Moreover, achieving reliable and interpretable diagnoses in the field of multimodal fusion remains challenging. To address them, we propose a novel multimodal diagnosis network based on multi-fusion and disease-induced learning (MDL-Net) to enhance early AD diagnosis by efficiently fusing multimodal data. Specifically, MDL-Net proposes a multi-fusion joint learning (MJL) module, which effectively fuses multimodal features and enhances the feature representation from global, local, and latent learning perspectives. MJL consists of three modules, global-aware learning (GAL), local-aware learning (LAL), and outer latent-space learning (LSL) modules. GAL via a self-adaptive Transformer (SAT) learns the global relationships among the modalities. LAL constructs local-aware convolution to learn the local associations. LSL module introduces latent information through outer product operation to further enhance feature representation. MDL-Net integrates the disease-induced region-aware learning (DRL) module via gradient weight to enhance interpretability, which iteratively learns weight matrices to identify AD-related brain regions. We conduct the extensive experiments on public datasets and the results confirm the superiority of our proposed method. Our code will be available at: https://github.com/qzf0320/MDL-Net .</description><identifier>ISSN: 0278-0062</identifier><identifier>ISSN: 1558-254X</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2024.3386937</identifier><identifier>PMID: 38607706</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>3D multimodal fusion network ; Algorithms ; Alzheimer Disease - diagnostic imaging ; Alzheimer’s disease diagnosis ; Brain - diagnostic imaging ; Brain modeling ; Deep learning ; disease-induced joint learning ; Early Diagnosis ; Feature extraction ; Fuses ; Humans ; Image Interpretation, Computer-Assisted - methods ; Imaging ; Imaging, Three-Dimensional - methods ; interpretability ; Machine Learning ; Magnetic Resonance Imaging - methods ; Multimodal Imaging - methods ; Neuroimaging ; Neuroimaging - methods ; Three-dimensional displays</subject><ispartof>IEEE transactions on medical imaging, 2024-09, Vol.43 (9), p.3161-3175</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c203t-cefaf6f86ccbe5b20349a188c6c4e36adf2d17f3c44dc5c0a850d70be8f6dc1e3</cites><orcidid>0000-0003-2781-6109 ; 0000-0003-1119-320X ; 0000-0002-3087-2550 ; 0000-0002-1248-1214 ; 0000-0002-2961-0860 ; 0000-0001-9005-5715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10498133$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10498133$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38607706$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiu, Zifeng</creatorcontrib><creatorcontrib>Yang, Peng</creatorcontrib><creatorcontrib>Xiao, Chunlun</creatorcontrib><creatorcontrib>Wang, Shuqiang</creatorcontrib><creatorcontrib>Xiao, Xiaohua</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><creatorcontrib>Liu, Chuan-Ming</creatorcontrib><creatorcontrib>Wang, Tianfu</creatorcontrib><creatorcontrib>Lei, Baiying</creatorcontrib><title>3D Multimodal Fusion Network With Disease-Induced Joint Learning for Early Alzheimer's Disease Diagnosis</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Multimodal neuroimaging provides complementary information critical for accurate early diagnosis of Alzheimer's disease (AD). However, the inherent variability between multimodal neuroimages hinders the effective fusion of multimodal features. Moreover, achieving reliable and interpretable diagnoses in the field of multimodal fusion remains challenging. To address them, we propose a novel multimodal diagnosis network based on multi-fusion and disease-induced learning (MDL-Net) to enhance early AD diagnosis by efficiently fusing multimodal data. Specifically, MDL-Net proposes a multi-fusion joint learning (MJL) module, which effectively fuses multimodal features and enhances the feature representation from global, local, and latent learning perspectives. MJL consists of three modules, global-aware learning (GAL), local-aware learning (LAL), and outer latent-space learning (LSL) modules. GAL via a self-adaptive Transformer (SAT) learns the global relationships among the modalities. LAL constructs local-aware convolution to learn the local associations. LSL module introduces latent information through outer product operation to further enhance feature representation. MDL-Net integrates the disease-induced region-aware learning (DRL) module via gradient weight to enhance interpretability, which iteratively learns weight matrices to identify AD-related brain regions. We conduct the extensive experiments on public datasets and the results confirm the superiority of our proposed method. Our code will be available at: https://github.com/qzf0320/MDL-Net .</description><subject>3D multimodal fusion network</subject><subject>Algorithms</subject><subject>Alzheimer Disease - diagnostic imaging</subject><subject>Alzheimer’s disease diagnosis</subject><subject>Brain - diagnostic imaging</subject><subject>Brain modeling</subject><subject>Deep learning</subject><subject>disease-induced joint learning</subject><subject>Early Diagnosis</subject><subject>Feature extraction</subject><subject>Fuses</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>interpretability</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Multimodal Imaging - methods</subject><subject>Neuroimaging</subject><subject>Neuroimaging - methods</subject><subject>Three-dimensional displays</subject><issn>0278-0062</issn><issn>1558-254X</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpNkDtPwzAUhS0EgvLYGRDyBkvKdewkzojKq6jAAoItcu1rakhisBMh-PUEtSCmIx195wwfIfsMxoxBeXJ_Mx2nkIox5zIvebFGRizLZJJm4mmdjCAtZAKQp1tkO8YXACYyKDfJ1kBDUUA-Igt-Rm_6unONN6qmF310vqW32H348EofXbegZy6iiphMW9NrNPTau7ajM1Shde0ztT7QcxXqT3pafy3QNRiO4u9oSPXc-ujiLtmwqo64t8od8nBxfj-5SmZ3l9PJ6SzRKfAu0WiVza3MtZ5jNh86USompc61QJ4rY1PDCsu1EEZnGpTMwBQwR2lzoxnyHXK8_H0L_r3H2FWNixrrWrXo-1hx4FJwmQoYUFiiOvgYA9rqLbhGhc-KQfXjtxr8Vj9-q5XfYXK4eu_nDZq_wa_QAThYAg4R__2JUjLO-Tcr-IA9</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Qiu, Zifeng</creator><creator>Yang, Peng</creator><creator>Xiao, Chunlun</creator><creator>Wang, Shuqiang</creator><creator>Xiao, Xiaohua</creator><creator>Qin, Jing</creator><creator>Liu, Chuan-Ming</creator><creator>Wang, Tianfu</creator><creator>Lei, Baiying</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2781-6109</orcidid><orcidid>https://orcid.org/0000-0003-1119-320X</orcidid><orcidid>https://orcid.org/0000-0002-3087-2550</orcidid><orcidid>https://orcid.org/0000-0002-1248-1214</orcidid><orcidid>https://orcid.org/0000-0002-2961-0860</orcidid><orcidid>https://orcid.org/0000-0001-9005-5715</orcidid></search><sort><creationdate>202409</creationdate><title>3D Multimodal Fusion Network With Disease-Induced Joint Learning for Early Alzheimer's Disease Diagnosis</title><author>Qiu, Zifeng ; Yang, Peng ; Xiao, Chunlun ; Wang, Shuqiang ; Xiao, Xiaohua ; Qin, Jing ; Liu, Chuan-Ming ; Wang, Tianfu ; Lei, Baiying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-cefaf6f86ccbe5b20349a188c6c4e36adf2d17f3c44dc5c0a850d70be8f6dc1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D multimodal fusion network</topic><topic>Algorithms</topic><topic>Alzheimer Disease - diagnostic imaging</topic><topic>Alzheimer’s disease diagnosis</topic><topic>Brain - diagnostic imaging</topic><topic>Brain modeling</topic><topic>Deep learning</topic><topic>disease-induced joint learning</topic><topic>Early Diagnosis</topic><topic>Feature extraction</topic><topic>Fuses</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>interpretability</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Multimodal Imaging - methods</topic><topic>Neuroimaging</topic><topic>Neuroimaging - methods</topic><topic>Three-dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Zifeng</creatorcontrib><creatorcontrib>Yang, Peng</creatorcontrib><creatorcontrib>Xiao, Chunlun</creatorcontrib><creatorcontrib>Wang, Shuqiang</creatorcontrib><creatorcontrib>Xiao, Xiaohua</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><creatorcontrib>Liu, Chuan-Ming</creatorcontrib><creatorcontrib>Wang, Tianfu</creatorcontrib><creatorcontrib>Lei, Baiying</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qiu, Zifeng</au><au>Yang, Peng</au><au>Xiao, Chunlun</au><au>Wang, Shuqiang</au><au>Xiao, Xiaohua</au><au>Qin, Jing</au><au>Liu, Chuan-Ming</au><au>Wang, Tianfu</au><au>Lei, Baiying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Multimodal Fusion Network With Disease-Induced Joint Learning for Early Alzheimer's Disease Diagnosis</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2024-09</date><risdate>2024</risdate><volume>43</volume><issue>9</issue><spage>3161</spage><epage>3175</epage><pages>3161-3175</pages><issn>0278-0062</issn><issn>1558-254X</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Multimodal neuroimaging provides complementary information critical for accurate early diagnosis of Alzheimer's disease (AD). However, the inherent variability between multimodal neuroimages hinders the effective fusion of multimodal features. Moreover, achieving reliable and interpretable diagnoses in the field of multimodal fusion remains challenging. To address them, we propose a novel multimodal diagnosis network based on multi-fusion and disease-induced learning (MDL-Net) to enhance early AD diagnosis by efficiently fusing multimodal data. Specifically, MDL-Net proposes a multi-fusion joint learning (MJL) module, which effectively fuses multimodal features and enhances the feature representation from global, local, and latent learning perspectives. MJL consists of three modules, global-aware learning (GAL), local-aware learning (LAL), and outer latent-space learning (LSL) modules. GAL via a self-adaptive Transformer (SAT) learns the global relationships among the modalities. LAL constructs local-aware convolution to learn the local associations. LSL module introduces latent information through outer product operation to further enhance feature representation. MDL-Net integrates the disease-induced region-aware learning (DRL) module via gradient weight to enhance interpretability, which iteratively learns weight matrices to identify AD-related brain regions. We conduct the extensive experiments on public datasets and the results confirm the superiority of our proposed method. Our code will be available at: https://github.com/qzf0320/MDL-Net .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38607706</pmid><doi>10.1109/TMI.2024.3386937</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2781-6109</orcidid><orcidid>https://orcid.org/0000-0003-1119-320X</orcidid><orcidid>https://orcid.org/0000-0002-3087-2550</orcidid><orcidid>https://orcid.org/0000-0002-1248-1214</orcidid><orcidid>https://orcid.org/0000-0002-2961-0860</orcidid><orcidid>https://orcid.org/0000-0001-9005-5715</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2024-09, Vol.43 (9), p.3161-3175 |
issn | 0278-0062 1558-254X 1558-254X |
language | eng |
recordid | cdi_ieee_primary_10498133 |
source | IEEE Electronic Library (IEL) |
subjects | 3D multimodal fusion network Algorithms Alzheimer Disease - diagnostic imaging Alzheimer’s disease diagnosis Brain - diagnostic imaging Brain modeling Deep learning disease-induced joint learning Early Diagnosis Feature extraction Fuses Humans Image Interpretation, Computer-Assisted - methods Imaging Imaging, Three-Dimensional - methods interpretability Machine Learning Magnetic Resonance Imaging - methods Multimodal Imaging - methods Neuroimaging Neuroimaging - methods Three-dimensional displays |
title | 3D Multimodal Fusion Network With Disease-Induced Joint Learning for Early Alzheimer's Disease Diagnosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A05%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Multimodal%20Fusion%20Network%20With%20Disease-Induced%20Joint%20Learning%20for%20Early%20Alzheimer's%20Disease%20Diagnosis&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Qiu,%20Zifeng&rft.date=2024-09&rft.volume=43&rft.issue=9&rft.spage=3161&rft.epage=3175&rft.pages=3161-3175&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2024.3386937&rft_dat=%3Cproquest_RIE%3E3038438240%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3038438240&rft_id=info:pmid/38607706&rft_ieee_id=10498133&rfr_iscdi=true |