A Computational Framework for Predicting Novel Drug Indications Using Graph Convolutional Network With Contrastive Learning

Inferring potential drug indications plays a vital role in the drug discovery process. It can be time-consuming and costly to discover novel drug indications through biological experiments. Recently, graph learning-based methods have gained popularity for this task. These methods typically treat the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2024-08, Vol.28 (8), p.4503-4511
Hauptverfasser: Luo, Yuxun, Shan, Wenyu, Peng, Li, Luo, Lingyun, Ding, Pingjian, Liang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inferring potential drug indications plays a vital role in the drug discovery process. It can be time-consuming and costly to discover novel drug indications through biological experiments. Recently, graph learning-based methods have gained popularity for this task. These methods typically treat the prediction task as a binary classification problem, focusing on modeling associations between drugs and diseases within a graph. However, labeled data for drug indication prediction is often limited and expensive to acquire. Contrastive learning addresses this challenge by aligning similar drug-disease pairs and separating dissimilar pairs in the embedding space. Thus, we developed a model called DrIGCL for drug indication prediction, which utilizes graph convolutional networks and contrastive learning. DrIGCL incorporates drug structure, disease comorbidities, and known drug indications to extract representations of drugs and diseases. By combining contrastive and classification losses, DrIGCL predicts drug indications effectively. In multiple runs of hold-out validation experiments, DrIGCL consistently outperformed existing computational methods for drug indication prediction, particularly in terms of top-k. Furthermore, our ablation study has demonstrated a significant improvement in the predictive capabilities of our model when utilizing contrastive learning. Finally, we validated the practical usefulness of DrIGCL by examining the predicted novel indications of Aspirin.
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2024.3387937