Radon Transform Constrained Multitrace Pre-Stack Deconvolution Algorithm

This article proposes a pre-stack deconvolution algorithm for the seismic common midpoint (CMP) gathers. Due to the low signal-to-noise ratio (SNR), poor lateral continuity of seismic CMP gathers, and residual time differences, conventional deconvolution algorithms struggle to enhance the resolution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-10
Hauptverfasser: Shi, Wei, Wang, Weihong, Shi, Ying, Chen, Siyuan, Wang, Ning, Cao, Bingyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Shi, Wei
Wang, Weihong
Shi, Ying
Chen, Siyuan
Wang, Ning
Cao, Bingyi
description This article proposes a pre-stack deconvolution algorithm for the seismic common midpoint (CMP) gathers. Due to the low signal-to-noise ratio (SNR), poor lateral continuity of seismic CMP gathers, and residual time differences, conventional deconvolution algorithms struggle to enhance the resolution while maintaining the SNR. As a result, the data after deconvolution are overwhelmed by noise. In addition, the deconvolution methods in the Radon transform domain are limited by the tailing of focal points in the Radon domain. Therefore, this research employs the Radon transform as a sparse-promoting transform for deconvolution. By applying thresholds in the Radon domain, this algorithm suppresses noise and reduces the instability of deconvolution. Depending on the noise distribution, either the L_{2} norm or the L_{1} norm is flexibly chosen as the fitting term to enhance the algorithm's versatility. Leveraging the strong denoising capability of the Radon transform, this algorithm improves resolution on gathers with a low SNR while enhancing lateral continuity. Model and actual data tests indicate that the algorithm effectively enhances the resolution of gathers, thus facilitating pre-stack amplitude versus offset (AVO) analysis and pre-stack inversion.
doi_str_mv 10.1109/TGRS.2024.3387756
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10497098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10497098</ieee_id><sourcerecordid>3044631229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-ac69a319ad6c576549f7a318be79d8c882103b7205d67c35efabc4c60e81281c3</originalsourceid><addsrcrecordid>eNpNkE1LAzEURYMoWKs_QHAx4HpqXr6zLNW2QkVp6zqkmYxOnU5qMiP4753SLlw9LtxzHxyEbgGPALB-WM-WqxHBhI0oVVJycYYGwLnKsWDsHA0waJETpcklukppizEwDnKA5ktbhCZbR9ukMsRdNglNaqOtGl9kL13dVn1wPnuLPl-11n1lj96F5ifUXVv14Lj-CLFqP3fX6KK0dfI3pztE79On9WSeL15nz5PxIneEiTa3TmhLQdtCOC4FZ7qUfVYbL3WhnFIEMN1IgnkhpKPcl3bjmBPYKyAKHB2i--PuPobvzqfWbEMXm_6loZgxQYEQ3bfg2HIxpBR9afax2tn4awCbgzBzEGYOwsxJWM_cHZnKe_-vz7TEWtE_KHRnIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044631229</pqid></control><display><type>article</type><title>Radon Transform Constrained Multitrace Pre-Stack Deconvolution Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Shi, Wei ; Wang, Weihong ; Shi, Ying ; Chen, Siyuan ; Wang, Ning ; Cao, Bingyi</creator><creatorcontrib>Shi, Wei ; Wang, Weihong ; Shi, Ying ; Chen, Siyuan ; Wang, Ning ; Cao, Bingyi</creatorcontrib><description><![CDATA[This article proposes a pre-stack deconvolution algorithm for the seismic common midpoint (CMP) gathers. Due to the low signal-to-noise ratio (SNR), poor lateral continuity of seismic CMP gathers, and residual time differences, conventional deconvolution algorithms struggle to enhance the resolution while maintaining the SNR. As a result, the data after deconvolution are overwhelmed by noise. In addition, the deconvolution methods in the Radon transform domain are limited by the tailing of focal points in the Radon domain. Therefore, this research employs the Radon transform as a sparse-promoting transform for deconvolution. By applying thresholds in the Radon domain, this algorithm suppresses noise and reduces the instability of deconvolution. Depending on the noise distribution, either the <inline-formula> <tex-math notation="LaTeX">L_{2} </tex-math></inline-formula> norm or the <inline-formula> <tex-math notation="LaTeX">L_{1} </tex-math></inline-formula> norm is flexibly chosen as the fitting term to enhance the algorithm's versatility. Leveraging the strong denoising capability of the Radon transform, this algorithm improves resolution on gathers with a low SNR while enhancing lateral continuity. Model and actual data tests indicate that the algorithm effectively enhances the resolution of gathers, thus facilitating pre-stack amplitude versus offset (AVO) analysis and pre-stack inversion.]]></description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3387756</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Common midpoint (CMP) gathers ; Continuity (mathematics) ; Deconvolution ; high-resolution ; Mathematical models ; Noise reduction ; Radon ; radon transform ; Radon transformation ; Seismic stability ; Signal to noise ratio ; Trajectory ; Transforms ; Wavelet transforms</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-ac69a319ad6c576549f7a318be79d8c882103b7205d67c35efabc4c60e81281c3</cites><orcidid>0000-0001-5609-7401 ; 0009-0004-2845-8221 ; 0000-0003-2332-2646 ; 0009-0009-8930-4492 ; 0000-0002-5931-5950</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10497098$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4014,27914,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10497098$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shi, Wei</creatorcontrib><creatorcontrib>Wang, Weihong</creatorcontrib><creatorcontrib>Shi, Ying</creatorcontrib><creatorcontrib>Chen, Siyuan</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Cao, Bingyi</creatorcontrib><title>Radon Transform Constrained Multitrace Pre-Stack Deconvolution Algorithm</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description><![CDATA[This article proposes a pre-stack deconvolution algorithm for the seismic common midpoint (CMP) gathers. Due to the low signal-to-noise ratio (SNR), poor lateral continuity of seismic CMP gathers, and residual time differences, conventional deconvolution algorithms struggle to enhance the resolution while maintaining the SNR. As a result, the data after deconvolution are overwhelmed by noise. In addition, the deconvolution methods in the Radon transform domain are limited by the tailing of focal points in the Radon domain. Therefore, this research employs the Radon transform as a sparse-promoting transform for deconvolution. By applying thresholds in the Radon domain, this algorithm suppresses noise and reduces the instability of deconvolution. Depending on the noise distribution, either the <inline-formula> <tex-math notation="LaTeX">L_{2} </tex-math></inline-formula> norm or the <inline-formula> <tex-math notation="LaTeX">L_{1} </tex-math></inline-formula> norm is flexibly chosen as the fitting term to enhance the algorithm's versatility. Leveraging the strong denoising capability of the Radon transform, this algorithm improves resolution on gathers with a low SNR while enhancing lateral continuity. Model and actual data tests indicate that the algorithm effectively enhances the resolution of gathers, thus facilitating pre-stack amplitude versus offset (AVO) analysis and pre-stack inversion.]]></description><subject>Algorithms</subject><subject>Common midpoint (CMP) gathers</subject><subject>Continuity (mathematics)</subject><subject>Deconvolution</subject><subject>high-resolution</subject><subject>Mathematical models</subject><subject>Noise reduction</subject><subject>Radon</subject><subject>radon transform</subject><subject>Radon transformation</subject><subject>Seismic stability</subject><subject>Signal to noise ratio</subject><subject>Trajectory</subject><subject>Transforms</subject><subject>Wavelet transforms</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEURYMoWKs_QHAx4HpqXr6zLNW2QkVp6zqkmYxOnU5qMiP4753SLlw9LtxzHxyEbgGPALB-WM-WqxHBhI0oVVJycYYGwLnKsWDsHA0waJETpcklukppizEwDnKA5ktbhCZbR9ukMsRdNglNaqOtGl9kL13dVn1wPnuLPl-11n1lj96F5ifUXVv14Lj-CLFqP3fX6KK0dfI3pztE79On9WSeL15nz5PxIneEiTa3TmhLQdtCOC4FZ7qUfVYbL3WhnFIEMN1IgnkhpKPcl3bjmBPYKyAKHB2i--PuPobvzqfWbEMXm_6loZgxQYEQ3bfg2HIxpBR9afax2tn4awCbgzBzEGYOwsxJWM_cHZnKe_-vz7TEWtE_KHRnIw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Shi, Wei</creator><creator>Wang, Weihong</creator><creator>Shi, Ying</creator><creator>Chen, Siyuan</creator><creator>Wang, Ning</creator><creator>Cao, Bingyi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5609-7401</orcidid><orcidid>https://orcid.org/0009-0004-2845-8221</orcidid><orcidid>https://orcid.org/0000-0003-2332-2646</orcidid><orcidid>https://orcid.org/0009-0009-8930-4492</orcidid><orcidid>https://orcid.org/0000-0002-5931-5950</orcidid></search><sort><creationdate>2024</creationdate><title>Radon Transform Constrained Multitrace Pre-Stack Deconvolution Algorithm</title><author>Shi, Wei ; Wang, Weihong ; Shi, Ying ; Chen, Siyuan ; Wang, Ning ; Cao, Bingyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-ac69a319ad6c576549f7a318be79d8c882103b7205d67c35efabc4c60e81281c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Common midpoint (CMP) gathers</topic><topic>Continuity (mathematics)</topic><topic>Deconvolution</topic><topic>high-resolution</topic><topic>Mathematical models</topic><topic>Noise reduction</topic><topic>Radon</topic><topic>radon transform</topic><topic>Radon transformation</topic><topic>Seismic stability</topic><topic>Signal to noise ratio</topic><topic>Trajectory</topic><topic>Transforms</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Wei</creatorcontrib><creatorcontrib>Wang, Weihong</creatorcontrib><creatorcontrib>Shi, Ying</creatorcontrib><creatorcontrib>Chen, Siyuan</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Cao, Bingyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shi, Wei</au><au>Wang, Weihong</au><au>Shi, Ying</au><au>Chen, Siyuan</au><au>Wang, Ning</au><au>Cao, Bingyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radon Transform Constrained Multitrace Pre-Stack Deconvolution Algorithm</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract><![CDATA[This article proposes a pre-stack deconvolution algorithm for the seismic common midpoint (CMP) gathers. Due to the low signal-to-noise ratio (SNR), poor lateral continuity of seismic CMP gathers, and residual time differences, conventional deconvolution algorithms struggle to enhance the resolution while maintaining the SNR. As a result, the data after deconvolution are overwhelmed by noise. In addition, the deconvolution methods in the Radon transform domain are limited by the tailing of focal points in the Radon domain. Therefore, this research employs the Radon transform as a sparse-promoting transform for deconvolution. By applying thresholds in the Radon domain, this algorithm suppresses noise and reduces the instability of deconvolution. Depending on the noise distribution, either the <inline-formula> <tex-math notation="LaTeX">L_{2} </tex-math></inline-formula> norm or the <inline-formula> <tex-math notation="LaTeX">L_{1} </tex-math></inline-formula> norm is flexibly chosen as the fitting term to enhance the algorithm's versatility. Leveraging the strong denoising capability of the Radon transform, this algorithm improves resolution on gathers with a low SNR while enhancing lateral continuity. Model and actual data tests indicate that the algorithm effectively enhances the resolution of gathers, thus facilitating pre-stack amplitude versus offset (AVO) analysis and pre-stack inversion.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3387756</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5609-7401</orcidid><orcidid>https://orcid.org/0009-0004-2845-8221</orcidid><orcidid>https://orcid.org/0000-0003-2332-2646</orcidid><orcidid>https://orcid.org/0009-0009-8930-4492</orcidid><orcidid>https://orcid.org/0000-0002-5931-5950</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-10
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10497098
source IEEE Electronic Library (IEL)
subjects Algorithms
Common midpoint (CMP) gathers
Continuity (mathematics)
Deconvolution
high-resolution
Mathematical models
Noise reduction
Radon
radon transform
Radon transformation
Seismic stability
Signal to noise ratio
Trajectory
Transforms
Wavelet transforms
title Radon Transform Constrained Multitrace Pre-Stack Deconvolution Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radon%20Transform%20Constrained%20Multitrace%20Pre-Stack%20Deconvolution%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Shi,%20Wei&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3387756&rft_dat=%3Cproquest_RIE%3E3044631229%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044631229&rft_id=info:pmid/&rft_ieee_id=10497098&rfr_iscdi=true