Research on a Single-Vibrator Multimodal Inertial Impact Piezoelectric Motor With Self-Clamping Backsliding Suppression

Traditional inertial impact piezoelectric motors can only operate under quasi-static conditions, resulting in low output force, torque, and speed, and there is a backsliding distance at each cycle that affects their working stability. Recently, many research works have changed their quasi-static wor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2024-11, Vol.71 (11), p.14546-14557
Hauptverfasser: He, Liangguo, Yue, Xukang, Shan, Zengxiang, Pan, Chengliang, Zhang, Liansheng, Xiao, Feiyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14557
container_issue 11
container_start_page 14546
container_title IEEE transactions on industrial electronics (1982)
container_volume 71
creator He, Liangguo
Yue, Xukang
Shan, Zengxiang
Pan, Chengliang
Zhang, Liansheng
Xiao, Feiyun
description Traditional inertial impact piezoelectric motors can only operate under quasi-static conditions, resulting in low output force, torque, and speed, and there is a backsliding distance at each cycle that affects their working stability. Recently, many research works have changed their quasi-static working state to a resonance state. In this study, a novel inertial impact piezoelectric motor is proposed. The multimodal and multifrequency band driving method can enable the driver to achieve bidirectional driving and wide resolution adjustment only using a single vibrator, and the unique self-clamping mechanism can effectively suppress the backsliding phenomenon. The dynamics model and FEM model are used for dynamic analysis and modal analysis of the proposed actuator. Manufacturing a prototype and building a test bench to test the performance of the motor. The experimental results show that in the resonant state, the maximum forward output speed is 4.401 mm/s and the displacement resolution is 66 μ m in first-order vibration mode. The maximum reverse output speed is 5.369 mm/s and the displacement resolution is 12 μ m in second-order vibration mode. Meanwhile, the maximum load capacity of the motor is 180 g. Under quasi-static conditions, the minimum displacement resolution of the motor can reach 4 μ m. Under 1 N preload, the backslidings of forward and reverse motor operation are 7.83% and 2.89%, respectively. Under 2 N preload, they are 3.98% and 1.53%, respectively. When the preload exceeds 3 N, the motor does not experience any rebound phenomenon in any state.
doi_str_mv 10.1109/TIE.2024.3360639
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10495731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10495731</ieee_id><sourcerecordid>3096067990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-f84eccfafa2e25b811d1eec53e6cd473d95726a3ff79f4e833b4416a79de1ccb3</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBYYk6xY-fDI1QFKrUC0QKj5Thn6pLGwU6E4NeTqB2Y7obnfe_0IHRJyYRSIm7W89kkJjGfMJaSlIkjNKJJkkVC8PwYjUic5REhPD1FZyFsCaE8ockIfb9AAOX1BrsaK7yy9UcF0ZstvGqdx8uuau3OlarC8xp8a4dl1yjd4mcLvw4q0K23Gi_dgL_bdoNXUJloWqld05fhO6U_Q2XLYV91TeMhBOvqc3RiVBXg4jDH6PV-tp4-Rounh_n0dhHpmCdtZHIOWhtlVAxxUuSUlhRAJwxSXfKMlSLJ4lQxYzJhOOSMFZzTVGWiBKp1wcboet_bePfVQWjl1nW-7k9KRkRvKhOC9BTZU9q7EDwY2Xi7U_5HUiIHvbLXKwe98qC3j1ztIxYA_uG8_4hR9ge40XjX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096067990</pqid></control><display><type>article</type><title>Research on a Single-Vibrator Multimodal Inertial Impact Piezoelectric Motor With Self-Clamping Backsliding Suppression</title><source>IEEE/IET Electronic Library (IEL)</source><creator>He, Liangguo ; Yue, Xukang ; Shan, Zengxiang ; Pan, Chengliang ; Zhang, Liansheng ; Xiao, Feiyun</creator><creatorcontrib>He, Liangguo ; Yue, Xukang ; Shan, Zengxiang ; Pan, Chengliang ; Zhang, Liansheng ; Xiao, Feiyun</creatorcontrib><description>Traditional inertial impact piezoelectric motors can only operate under quasi-static conditions, resulting in low output force, torque, and speed, and there is a backsliding distance at each cycle that affects their working stability. Recently, many research works have changed their quasi-static working state to a resonance state. In this study, a novel inertial impact piezoelectric motor is proposed. The multimodal and multifrequency band driving method can enable the driver to achieve bidirectional driving and wide resolution adjustment only using a single vibrator, and the unique self-clamping mechanism can effectively suppress the backsliding phenomenon. The dynamics model and FEM model are used for dynamic analysis and modal analysis of the proposed actuator. Manufacturing a prototype and building a test bench to test the performance of the motor. The experimental results show that in the resonant state, the maximum forward output speed is 4.401 mm/s and the displacement resolution is 66 μ m in first-order vibration mode. The maximum reverse output speed is 5.369 mm/s and the displacement resolution is 12 μ m in second-order vibration mode. Meanwhile, the maximum load capacity of the motor is 180 g. Under quasi-static conditions, the minimum displacement resolution of the motor can reach 4 μ m. Under 1 N preload, the backslidings of forward and reverse motor operation are 7.83% and 2.89%, respectively. Under 2 N preload, they are 3.98% and 1.53%, respectively. When the preload exceeds 3 N, the motor does not experience any rebound phenomenon in any state.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2024.3360639</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Backsliding suppression ; bidirectional motion ; Clamping ; Clamps ; Fasteners ; inertial impact ; Modal analysis ; Motors ; multimode-driven ; Piezoelectric motors ; resonance oscillation ; Resonant frequency ; self-clamping ; Substrates ; Vibration analysis ; Vibration mode ; Vibrations</subject><ispartof>IEEE transactions on industrial electronics (1982), 2024-11, Vol.71 (11), p.14546-14557</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-f84eccfafa2e25b811d1eec53e6cd473d95726a3ff79f4e833b4416a79de1ccb3</cites><orcidid>0000-0001-9739-2407 ; 0000-0002-9365-5502 ; 0000-0003-1950-2695 ; 0000-0002-6536-0571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10495731$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10495731$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Liangguo</creatorcontrib><creatorcontrib>Yue, Xukang</creatorcontrib><creatorcontrib>Shan, Zengxiang</creatorcontrib><creatorcontrib>Pan, Chengliang</creatorcontrib><creatorcontrib>Zhang, Liansheng</creatorcontrib><creatorcontrib>Xiao, Feiyun</creatorcontrib><title>Research on a Single-Vibrator Multimodal Inertial Impact Piezoelectric Motor With Self-Clamping Backsliding Suppression</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Traditional inertial impact piezoelectric motors can only operate under quasi-static conditions, resulting in low output force, torque, and speed, and there is a backsliding distance at each cycle that affects their working stability. Recently, many research works have changed their quasi-static working state to a resonance state. In this study, a novel inertial impact piezoelectric motor is proposed. The multimodal and multifrequency band driving method can enable the driver to achieve bidirectional driving and wide resolution adjustment only using a single vibrator, and the unique self-clamping mechanism can effectively suppress the backsliding phenomenon. The dynamics model and FEM model are used for dynamic analysis and modal analysis of the proposed actuator. Manufacturing a prototype and building a test bench to test the performance of the motor. The experimental results show that in the resonant state, the maximum forward output speed is 4.401 mm/s and the displacement resolution is 66 μ m in first-order vibration mode. The maximum reverse output speed is 5.369 mm/s and the displacement resolution is 12 μ m in second-order vibration mode. Meanwhile, the maximum load capacity of the motor is 180 g. Under quasi-static conditions, the minimum displacement resolution of the motor can reach 4 μ m. Under 1 N preload, the backslidings of forward and reverse motor operation are 7.83% and 2.89%, respectively. Under 2 N preload, they are 3.98% and 1.53%, respectively. When the preload exceeds 3 N, the motor does not experience any rebound phenomenon in any state.</description><subject>Actuators</subject><subject>Backsliding suppression</subject><subject>bidirectional motion</subject><subject>Clamping</subject><subject>Clamps</subject><subject>Fasteners</subject><subject>inertial impact</subject><subject>Modal analysis</subject><subject>Motors</subject><subject>multimode-driven</subject><subject>Piezoelectric motors</subject><subject>resonance oscillation</subject><subject>Resonant frequency</subject><subject>self-clamping</subject><subject>Substrates</subject><subject>Vibration analysis</subject><subject>Vibration mode</subject><subject>Vibrations</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzBYYk6xY-fDI1QFKrUC0QKj5Thn6pLGwU6E4NeTqB2Y7obnfe_0IHRJyYRSIm7W89kkJjGfMJaSlIkjNKJJkkVC8PwYjUic5REhPD1FZyFsCaE8ockIfb9AAOX1BrsaK7yy9UcF0ZstvGqdx8uuau3OlarC8xp8a4dl1yjd4mcLvw4q0K23Gi_dgL_bdoNXUJloWqld05fhO6U_Q2XLYV91TeMhBOvqc3RiVBXg4jDH6PV-tp4-Rounh_n0dhHpmCdtZHIOWhtlVAxxUuSUlhRAJwxSXfKMlSLJ4lQxYzJhOOSMFZzTVGWiBKp1wcboet_bePfVQWjl1nW-7k9KRkRvKhOC9BTZU9q7EDwY2Xi7U_5HUiIHvbLXKwe98qC3j1ztIxYA_uG8_4hR9ge40XjX</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>He, Liangguo</creator><creator>Yue, Xukang</creator><creator>Shan, Zengxiang</creator><creator>Pan, Chengliang</creator><creator>Zhang, Liansheng</creator><creator>Xiao, Feiyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9739-2407</orcidid><orcidid>https://orcid.org/0000-0002-9365-5502</orcidid><orcidid>https://orcid.org/0000-0003-1950-2695</orcidid><orcidid>https://orcid.org/0000-0002-6536-0571</orcidid></search><sort><creationdate>20241101</creationdate><title>Research on a Single-Vibrator Multimodal Inertial Impact Piezoelectric Motor With Self-Clamping Backsliding Suppression</title><author>He, Liangguo ; Yue, Xukang ; Shan, Zengxiang ; Pan, Chengliang ; Zhang, Liansheng ; Xiao, Feiyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-f84eccfafa2e25b811d1eec53e6cd473d95726a3ff79f4e833b4416a79de1ccb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuators</topic><topic>Backsliding suppression</topic><topic>bidirectional motion</topic><topic>Clamping</topic><topic>Clamps</topic><topic>Fasteners</topic><topic>inertial impact</topic><topic>Modal analysis</topic><topic>Motors</topic><topic>multimode-driven</topic><topic>Piezoelectric motors</topic><topic>resonance oscillation</topic><topic>Resonant frequency</topic><topic>self-clamping</topic><topic>Substrates</topic><topic>Vibration analysis</topic><topic>Vibration mode</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Liangguo</creatorcontrib><creatorcontrib>Yue, Xukang</creatorcontrib><creatorcontrib>Shan, Zengxiang</creatorcontrib><creatorcontrib>Pan, Chengliang</creatorcontrib><creatorcontrib>Zhang, Liansheng</creatorcontrib><creatorcontrib>Xiao, Feiyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Liangguo</au><au>Yue, Xukang</au><au>Shan, Zengxiang</au><au>Pan, Chengliang</au><au>Zhang, Liansheng</au><au>Xiao, Feiyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on a Single-Vibrator Multimodal Inertial Impact Piezoelectric Motor With Self-Clamping Backsliding Suppression</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>71</volume><issue>11</issue><spage>14546</spage><epage>14557</epage><pages>14546-14557</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Traditional inertial impact piezoelectric motors can only operate under quasi-static conditions, resulting in low output force, torque, and speed, and there is a backsliding distance at each cycle that affects their working stability. Recently, many research works have changed their quasi-static working state to a resonance state. In this study, a novel inertial impact piezoelectric motor is proposed. The multimodal and multifrequency band driving method can enable the driver to achieve bidirectional driving and wide resolution adjustment only using a single vibrator, and the unique self-clamping mechanism can effectively suppress the backsliding phenomenon. The dynamics model and FEM model are used for dynamic analysis and modal analysis of the proposed actuator. Manufacturing a prototype and building a test bench to test the performance of the motor. The experimental results show that in the resonant state, the maximum forward output speed is 4.401 mm/s and the displacement resolution is 66 μ m in first-order vibration mode. The maximum reverse output speed is 5.369 mm/s and the displacement resolution is 12 μ m in second-order vibration mode. Meanwhile, the maximum load capacity of the motor is 180 g. Under quasi-static conditions, the minimum displacement resolution of the motor can reach 4 μ m. Under 1 N preload, the backslidings of forward and reverse motor operation are 7.83% and 2.89%, respectively. Under 2 N preload, they are 3.98% and 1.53%, respectively. When the preload exceeds 3 N, the motor does not experience any rebound phenomenon in any state.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2024.3360639</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9739-2407</orcidid><orcidid>https://orcid.org/0000-0002-9365-5502</orcidid><orcidid>https://orcid.org/0000-0003-1950-2695</orcidid><orcidid>https://orcid.org/0000-0002-6536-0571</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2024-11, Vol.71 (11), p.14546-14557
issn 0278-0046
1557-9948
language eng
recordid cdi_ieee_primary_10495731
source IEEE/IET Electronic Library (IEL)
subjects Actuators
Backsliding suppression
bidirectional motion
Clamping
Clamps
Fasteners
inertial impact
Modal analysis
Motors
multimode-driven
Piezoelectric motors
resonance oscillation
Resonant frequency
self-clamping
Substrates
Vibration analysis
Vibration mode
Vibrations
title Research on a Single-Vibrator Multimodal Inertial Impact Piezoelectric Motor With Self-Clamping Backsliding Suppression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A27%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20a%20Single-Vibrator%20Multimodal%20Inertial%20Impact%20Piezoelectric%20Motor%20With%20Self-Clamping%20Backsliding%20Suppression&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=He,%20Liangguo&rft.date=2024-11-01&rft.volume=71&rft.issue=11&rft.spage=14546&rft.epage=14557&rft.pages=14546-14557&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2024.3360639&rft_dat=%3Cproquest_RIE%3E3096067990%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096067990&rft_id=info:pmid/&rft_ieee_id=10495731&rfr_iscdi=true