Fiber Probe Based on Dispersive Interferometry With an Improved Demodulation Algorithm
We present a microfiber probe based on dispersive interferometry (FPDI) for measuring high-aspect ratio structures with an improved demodulation algorithm and an offset correction method. To accommodate the need for weak signal-to-noise signal demodulation and accurate measurements in FPDI applicati...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-8 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 73 |
creator | Chen, Yuming Chen, Ze Cui, Jiwen Zhao, Haiying Wang, Yunlong Zhao, Huining Tan, Jiubin |
description | We present a microfiber probe based on dispersive interferometry (FPDI) for measuring high-aspect ratio structures with an improved demodulation algorithm and an offset correction method. To accommodate the need for weak signal-to-noise signal demodulation and accurate measurements in FPDI applications, we propose a composite algorithm for dispersive interferometry to improve the accuracy and noise immunity. Then, to simplify the alignment process of the fiber probe, we propose an offset correction method based on an optimization algorithm. Experimental results show that the fiber probe with our proposed algorithm has less repeatability error and linearity in applications than traditional algorithms. The axial resolution of the fiber probe is better than 0.1~\mu \text{m} , with a repeatability error of 0.011~\mu \text{m} and a linearity of 0.03%. In addition, we measure a 1.2-mm standard ring gauge with FPDI. After correcting the offset, the difference between the measured diameter and the standard value is less than 0.03%. |
doi_str_mv | 10.1109/TIM.2024.3385815 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10494714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10494714</ieee_id><sourcerecordid>3133495327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c160t-787f854841e2bda448b4bcc87609e009aa2b29747cfc5b7de477a630aac068e63</originalsourceid><addsrcrecordid>eNpNkD1PwzAQQC0EEqWwMzBYYk6x4--xtBQqFcFQYLSc5AKpmrjYaaX-e1y1A9Mt792dHkK3lIwoJeZhOX8d5STnI8a00FScoQEVQmVGyvwcDQihOjNcyEt0FeOKEKIkVwP0OWsKCPg9-ALwo4tQYd_haRM3EGKzAzzvegg1BN9CH_b4q-l_sOvwvN0Ev0v0FFpfbdeub5I3Xn_7kIj2Gl3Ubh3h5jSH6GP2tJy8ZIu35_lkvMhKKkmfKa1qLbjmFPKicpzrghdlqZUkBggxzuVFbhRXZV2KQlXAlXKSEedKIjVINkT3x73pm98txN6u_DZ06aRllDFuBMtVosiRKoOPMUBtN6FpXdhbSuyhnk317KGePdVLyt1RaQDgH84NV5SzP613a2U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133495327</pqid></control><display><type>article</type><title>Fiber Probe Based on Dispersive Interferometry With an Improved Demodulation Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Yuming ; Chen, Ze ; Cui, Jiwen ; Zhao, Haiying ; Wang, Yunlong ; Zhao, Huining ; Tan, Jiubin</creator><creatorcontrib>Chen, Yuming ; Chen, Ze ; Cui, Jiwen ; Zhao, Haiying ; Wang, Yunlong ; Zhao, Huining ; Tan, Jiubin</creatorcontrib><description><![CDATA[We present a microfiber probe based on dispersive interferometry (FPDI) for measuring high-aspect ratio structures with an improved demodulation algorithm and an offset correction method. To accommodate the need for weak signal-to-noise signal demodulation and accurate measurements in FPDI applications, we propose a composite algorithm for dispersive interferometry to improve the accuracy and noise immunity. Then, to simplify the alignment process of the fiber probe, we propose an offset correction method based on an optimization algorithm. Experimental results show that the fiber probe with our proposed algorithm has less repeatability error and linearity in applications than traditional algorithms. The axial resolution of the fiber probe is better than <inline-formula> <tex-math notation="LaTeX">0.1~\mu \text{m} </tex-math></inline-formula>, with a repeatability error of <inline-formula> <tex-math notation="LaTeX">0.011~\mu \text{m} </tex-math></inline-formula> and a linearity of 0.03%. In addition, we measure a 1.2-mm standard ring gauge with FPDI. After correcting the offset, the difference between the measured diameter and the standard value is less than 0.03%.]]></description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3385815</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Absolute distance measurement ; Adaptive optics ; Algorithms ; Aspect ratio ; Demodulation ; dispersion interferometry ; Error analysis ; Error correction ; fiber probe ; high-aspect-ratio structure measurement ; Interference ; Interferometry ; Linearity ; Microfibers ; Optical fiber dispersion ; Optical fibers ; precision geometric measurement ; Probes ; Reproducibility</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c160t-787f854841e2bda448b4bcc87609e009aa2b29747cfc5b7de477a630aac068e63</cites><orcidid>0009-0002-3982-2768 ; 0000-0002-1305-4003 ; 0000-0002-0941-7932 ; 0009-0000-6085-4356 ; 0009-0007-4317-0033 ; 0000-0003-2480-1200 ; 0009-0000-8959-1641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10494714$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27921,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10494714$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yuming</creatorcontrib><creatorcontrib>Chen, Ze</creatorcontrib><creatorcontrib>Cui, Jiwen</creatorcontrib><creatorcontrib>Zhao, Haiying</creatorcontrib><creatorcontrib>Wang, Yunlong</creatorcontrib><creatorcontrib>Zhao, Huining</creatorcontrib><creatorcontrib>Tan, Jiubin</creatorcontrib><title>Fiber Probe Based on Dispersive Interferometry With an Improved Demodulation Algorithm</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description><![CDATA[We present a microfiber probe based on dispersive interferometry (FPDI) for measuring high-aspect ratio structures with an improved demodulation algorithm and an offset correction method. To accommodate the need for weak signal-to-noise signal demodulation and accurate measurements in FPDI applications, we propose a composite algorithm for dispersive interferometry to improve the accuracy and noise immunity. Then, to simplify the alignment process of the fiber probe, we propose an offset correction method based on an optimization algorithm. Experimental results show that the fiber probe with our proposed algorithm has less repeatability error and linearity in applications than traditional algorithms. The axial resolution of the fiber probe is better than <inline-formula> <tex-math notation="LaTeX">0.1~\mu \text{m} </tex-math></inline-formula>, with a repeatability error of <inline-formula> <tex-math notation="LaTeX">0.011~\mu \text{m} </tex-math></inline-formula> and a linearity of 0.03%. In addition, we measure a 1.2-mm standard ring gauge with FPDI. After correcting the offset, the difference between the measured diameter and the standard value is less than 0.03%.]]></description><subject>Absolute distance measurement</subject><subject>Adaptive optics</subject><subject>Algorithms</subject><subject>Aspect ratio</subject><subject>Demodulation</subject><subject>dispersion interferometry</subject><subject>Error analysis</subject><subject>Error correction</subject><subject>fiber probe</subject><subject>high-aspect-ratio structure measurement</subject><subject>Interference</subject><subject>Interferometry</subject><subject>Linearity</subject><subject>Microfibers</subject><subject>Optical fiber dispersion</subject><subject>Optical fibers</subject><subject>precision geometric measurement</subject><subject>Probes</subject><subject>Reproducibility</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQQC0EEqWwMzBYYk6x4--xtBQqFcFQYLSc5AKpmrjYaaX-e1y1A9Mt792dHkK3lIwoJeZhOX8d5STnI8a00FScoQEVQmVGyvwcDQihOjNcyEt0FeOKEKIkVwP0OWsKCPg9-ALwo4tQYd_haRM3EGKzAzzvegg1BN9CH_b4q-l_sOvwvN0Ev0v0FFpfbdeub5I3Xn_7kIj2Gl3Ubh3h5jSH6GP2tJy8ZIu35_lkvMhKKkmfKa1qLbjmFPKicpzrghdlqZUkBggxzuVFbhRXZV2KQlXAlXKSEedKIjVINkT3x73pm98txN6u_DZ06aRllDFuBMtVosiRKoOPMUBtN6FpXdhbSuyhnk317KGePdVLyt1RaQDgH84NV5SzP613a2U</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Chen, Yuming</creator><creator>Chen, Ze</creator><creator>Cui, Jiwen</creator><creator>Zhao, Haiying</creator><creator>Wang, Yunlong</creator><creator>Zhao, Huining</creator><creator>Tan, Jiubin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0002-3982-2768</orcidid><orcidid>https://orcid.org/0000-0002-1305-4003</orcidid><orcidid>https://orcid.org/0000-0002-0941-7932</orcidid><orcidid>https://orcid.org/0009-0000-6085-4356</orcidid><orcidid>https://orcid.org/0009-0007-4317-0033</orcidid><orcidid>https://orcid.org/0000-0003-2480-1200</orcidid><orcidid>https://orcid.org/0009-0000-8959-1641</orcidid></search><sort><creationdate>2024</creationdate><title>Fiber Probe Based on Dispersive Interferometry With an Improved Demodulation Algorithm</title><author>Chen, Yuming ; Chen, Ze ; Cui, Jiwen ; Zhao, Haiying ; Wang, Yunlong ; Zhao, Huining ; Tan, Jiubin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c160t-787f854841e2bda448b4bcc87609e009aa2b29747cfc5b7de477a630aac068e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absolute distance measurement</topic><topic>Adaptive optics</topic><topic>Algorithms</topic><topic>Aspect ratio</topic><topic>Demodulation</topic><topic>dispersion interferometry</topic><topic>Error analysis</topic><topic>Error correction</topic><topic>fiber probe</topic><topic>high-aspect-ratio structure measurement</topic><topic>Interference</topic><topic>Interferometry</topic><topic>Linearity</topic><topic>Microfibers</topic><topic>Optical fiber dispersion</topic><topic>Optical fibers</topic><topic>precision geometric measurement</topic><topic>Probes</topic><topic>Reproducibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yuming</creatorcontrib><creatorcontrib>Chen, Ze</creatorcontrib><creatorcontrib>Cui, Jiwen</creatorcontrib><creatorcontrib>Zhao, Haiying</creatorcontrib><creatorcontrib>Wang, Yunlong</creatorcontrib><creatorcontrib>Zhao, Huining</creatorcontrib><creatorcontrib>Tan, Jiubin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yuming</au><au>Chen, Ze</au><au>Cui, Jiwen</au><au>Zhao, Haiying</au><au>Wang, Yunlong</au><au>Zhao, Huining</au><au>Tan, Jiubin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fiber Probe Based on Dispersive Interferometry With an Improved Demodulation Algorithm</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract><![CDATA[We present a microfiber probe based on dispersive interferometry (FPDI) for measuring high-aspect ratio structures with an improved demodulation algorithm and an offset correction method. To accommodate the need for weak signal-to-noise signal demodulation and accurate measurements in FPDI applications, we propose a composite algorithm for dispersive interferometry to improve the accuracy and noise immunity. Then, to simplify the alignment process of the fiber probe, we propose an offset correction method based on an optimization algorithm. Experimental results show that the fiber probe with our proposed algorithm has less repeatability error and linearity in applications than traditional algorithms. The axial resolution of the fiber probe is better than <inline-formula> <tex-math notation="LaTeX">0.1~\mu \text{m} </tex-math></inline-formula>, with a repeatability error of <inline-formula> <tex-math notation="LaTeX">0.011~\mu \text{m} </tex-math></inline-formula> and a linearity of 0.03%. In addition, we measure a 1.2-mm standard ring gauge with FPDI. After correcting the offset, the difference between the measured diameter and the standard value is less than 0.03%.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2024.3385815</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0002-3982-2768</orcidid><orcidid>https://orcid.org/0000-0002-1305-4003</orcidid><orcidid>https://orcid.org/0000-0002-0941-7932</orcidid><orcidid>https://orcid.org/0009-0000-6085-4356</orcidid><orcidid>https://orcid.org/0009-0007-4317-0033</orcidid><orcidid>https://orcid.org/0000-0003-2480-1200</orcidid><orcidid>https://orcid.org/0009-0000-8959-1641</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-8 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_10494714 |
source | IEEE Electronic Library (IEL) |
subjects | Absolute distance measurement Adaptive optics Algorithms Aspect ratio Demodulation dispersion interferometry Error analysis Error correction fiber probe high-aspect-ratio structure measurement Interference Interferometry Linearity Microfibers Optical fiber dispersion Optical fibers precision geometric measurement Probes Reproducibility |
title | Fiber Probe Based on Dispersive Interferometry With an Improved Demodulation Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A46%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fiber%20Probe%20Based%20on%20Dispersive%20Interferometry%20With%20an%20Improved%20Demodulation%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Chen,%20Yuming&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3385815&rft_dat=%3Cproquest_RIE%3E3133495327%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133495327&rft_id=info:pmid/&rft_ieee_id=10494714&rfr_iscdi=true |