Fiber Probe Based on Dispersive Interferometry With an Improved Demodulation Algorithm

We present a microfiber probe based on dispersive interferometry (FPDI) for measuring high-aspect ratio structures with an improved demodulation algorithm and an offset correction method. To accommodate the need for weak signal-to-noise signal demodulation and accurate measurements in FPDI applicati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-8
Hauptverfasser: Chen, Yuming, Chen, Ze, Cui, Jiwen, Zhao, Haiying, Wang, Yunlong, Zhao, Huining, Tan, Jiubin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 73
creator Chen, Yuming
Chen, Ze
Cui, Jiwen
Zhao, Haiying
Wang, Yunlong
Zhao, Huining
Tan, Jiubin
description We present a microfiber probe based on dispersive interferometry (FPDI) for measuring high-aspect ratio structures with an improved demodulation algorithm and an offset correction method. To accommodate the need for weak signal-to-noise signal demodulation and accurate measurements in FPDI applications, we propose a composite algorithm for dispersive interferometry to improve the accuracy and noise immunity. Then, to simplify the alignment process of the fiber probe, we propose an offset correction method based on an optimization algorithm. Experimental results show that the fiber probe with our proposed algorithm has less repeatability error and linearity in applications than traditional algorithms. The axial resolution of the fiber probe is better than 0.1~\mu \text{m} , with a repeatability error of 0.011~\mu \text{m} and a linearity of 0.03%. In addition, we measure a 1.2-mm standard ring gauge with FPDI. After correcting the offset, the difference between the measured diameter and the standard value is less than 0.03%.
doi_str_mv 10.1109/TIM.2024.3385815
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10494714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10494714</ieee_id><sourcerecordid>3133495327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c160t-787f854841e2bda448b4bcc87609e009aa2b29747cfc5b7de477a630aac068e63</originalsourceid><addsrcrecordid>eNpNkD1PwzAQQC0EEqWwMzBYYk6x4--xtBQqFcFQYLSc5AKpmrjYaaX-e1y1A9Mt792dHkK3lIwoJeZhOX8d5STnI8a00FScoQEVQmVGyvwcDQihOjNcyEt0FeOKEKIkVwP0OWsKCPg9-ALwo4tQYd_haRM3EGKzAzzvegg1BN9CH_b4q-l_sOvwvN0Ev0v0FFpfbdeub5I3Xn_7kIj2Gl3Ubh3h5jSH6GP2tJy8ZIu35_lkvMhKKkmfKa1qLbjmFPKicpzrghdlqZUkBggxzuVFbhRXZV2KQlXAlXKSEedKIjVINkT3x73pm98txN6u_DZ06aRllDFuBMtVosiRKoOPMUBtN6FpXdhbSuyhnk317KGePdVLyt1RaQDgH84NV5SzP613a2U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133495327</pqid></control><display><type>article</type><title>Fiber Probe Based on Dispersive Interferometry With an Improved Demodulation Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Yuming ; Chen, Ze ; Cui, Jiwen ; Zhao, Haiying ; Wang, Yunlong ; Zhao, Huining ; Tan, Jiubin</creator><creatorcontrib>Chen, Yuming ; Chen, Ze ; Cui, Jiwen ; Zhao, Haiying ; Wang, Yunlong ; Zhao, Huining ; Tan, Jiubin</creatorcontrib><description><![CDATA[We present a microfiber probe based on dispersive interferometry (FPDI) for measuring high-aspect ratio structures with an improved demodulation algorithm and an offset correction method. To accommodate the need for weak signal-to-noise signal demodulation and accurate measurements in FPDI applications, we propose a composite algorithm for dispersive interferometry to improve the accuracy and noise immunity. Then, to simplify the alignment process of the fiber probe, we propose an offset correction method based on an optimization algorithm. Experimental results show that the fiber probe with our proposed algorithm has less repeatability error and linearity in applications than traditional algorithms. The axial resolution of the fiber probe is better than <inline-formula> <tex-math notation="LaTeX">0.1~\mu \text{m} </tex-math></inline-formula>, with a repeatability error of <inline-formula> <tex-math notation="LaTeX">0.011~\mu \text{m} </tex-math></inline-formula> and a linearity of 0.03%. In addition, we measure a 1.2-mm standard ring gauge with FPDI. After correcting the offset, the difference between the measured diameter and the standard value is less than 0.03%.]]></description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3385815</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Absolute distance measurement ; Adaptive optics ; Algorithms ; Aspect ratio ; Demodulation ; dispersion interferometry ; Error analysis ; Error correction ; fiber probe ; high-aspect-ratio structure measurement ; Interference ; Interferometry ; Linearity ; Microfibers ; Optical fiber dispersion ; Optical fibers ; precision geometric measurement ; Probes ; Reproducibility</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c160t-787f854841e2bda448b4bcc87609e009aa2b29747cfc5b7de477a630aac068e63</cites><orcidid>0009-0002-3982-2768 ; 0000-0002-1305-4003 ; 0000-0002-0941-7932 ; 0009-0000-6085-4356 ; 0009-0007-4317-0033 ; 0000-0003-2480-1200 ; 0009-0000-8959-1641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10494714$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27921,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10494714$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yuming</creatorcontrib><creatorcontrib>Chen, Ze</creatorcontrib><creatorcontrib>Cui, Jiwen</creatorcontrib><creatorcontrib>Zhao, Haiying</creatorcontrib><creatorcontrib>Wang, Yunlong</creatorcontrib><creatorcontrib>Zhao, Huining</creatorcontrib><creatorcontrib>Tan, Jiubin</creatorcontrib><title>Fiber Probe Based on Dispersive Interferometry With an Improved Demodulation Algorithm</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description><![CDATA[We present a microfiber probe based on dispersive interferometry (FPDI) for measuring high-aspect ratio structures with an improved demodulation algorithm and an offset correction method. To accommodate the need for weak signal-to-noise signal demodulation and accurate measurements in FPDI applications, we propose a composite algorithm for dispersive interferometry to improve the accuracy and noise immunity. Then, to simplify the alignment process of the fiber probe, we propose an offset correction method based on an optimization algorithm. Experimental results show that the fiber probe with our proposed algorithm has less repeatability error and linearity in applications than traditional algorithms. The axial resolution of the fiber probe is better than <inline-formula> <tex-math notation="LaTeX">0.1~\mu \text{m} </tex-math></inline-formula>, with a repeatability error of <inline-formula> <tex-math notation="LaTeX">0.011~\mu \text{m} </tex-math></inline-formula> and a linearity of 0.03%. In addition, we measure a 1.2-mm standard ring gauge with FPDI. After correcting the offset, the difference between the measured diameter and the standard value is less than 0.03%.]]></description><subject>Absolute distance measurement</subject><subject>Adaptive optics</subject><subject>Algorithms</subject><subject>Aspect ratio</subject><subject>Demodulation</subject><subject>dispersion interferometry</subject><subject>Error analysis</subject><subject>Error correction</subject><subject>fiber probe</subject><subject>high-aspect-ratio structure measurement</subject><subject>Interference</subject><subject>Interferometry</subject><subject>Linearity</subject><subject>Microfibers</subject><subject>Optical fiber dispersion</subject><subject>Optical fibers</subject><subject>precision geometric measurement</subject><subject>Probes</subject><subject>Reproducibility</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQQC0EEqWwMzBYYk6x4--xtBQqFcFQYLSc5AKpmrjYaaX-e1y1A9Mt792dHkK3lIwoJeZhOX8d5STnI8a00FScoQEVQmVGyvwcDQihOjNcyEt0FeOKEKIkVwP0OWsKCPg9-ALwo4tQYd_haRM3EGKzAzzvegg1BN9CH_b4q-l_sOvwvN0Ev0v0FFpfbdeub5I3Xn_7kIj2Gl3Ubh3h5jSH6GP2tJy8ZIu35_lkvMhKKkmfKa1qLbjmFPKicpzrghdlqZUkBggxzuVFbhRXZV2KQlXAlXKSEedKIjVINkT3x73pm98txN6u_DZ06aRllDFuBMtVosiRKoOPMUBtN6FpXdhbSuyhnk317KGePdVLyt1RaQDgH84NV5SzP613a2U</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Chen, Yuming</creator><creator>Chen, Ze</creator><creator>Cui, Jiwen</creator><creator>Zhao, Haiying</creator><creator>Wang, Yunlong</creator><creator>Zhao, Huining</creator><creator>Tan, Jiubin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0002-3982-2768</orcidid><orcidid>https://orcid.org/0000-0002-1305-4003</orcidid><orcidid>https://orcid.org/0000-0002-0941-7932</orcidid><orcidid>https://orcid.org/0009-0000-6085-4356</orcidid><orcidid>https://orcid.org/0009-0007-4317-0033</orcidid><orcidid>https://orcid.org/0000-0003-2480-1200</orcidid><orcidid>https://orcid.org/0009-0000-8959-1641</orcidid></search><sort><creationdate>2024</creationdate><title>Fiber Probe Based on Dispersive Interferometry With an Improved Demodulation Algorithm</title><author>Chen, Yuming ; Chen, Ze ; Cui, Jiwen ; Zhao, Haiying ; Wang, Yunlong ; Zhao, Huining ; Tan, Jiubin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c160t-787f854841e2bda448b4bcc87609e009aa2b29747cfc5b7de477a630aac068e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absolute distance measurement</topic><topic>Adaptive optics</topic><topic>Algorithms</topic><topic>Aspect ratio</topic><topic>Demodulation</topic><topic>dispersion interferometry</topic><topic>Error analysis</topic><topic>Error correction</topic><topic>fiber probe</topic><topic>high-aspect-ratio structure measurement</topic><topic>Interference</topic><topic>Interferometry</topic><topic>Linearity</topic><topic>Microfibers</topic><topic>Optical fiber dispersion</topic><topic>Optical fibers</topic><topic>precision geometric measurement</topic><topic>Probes</topic><topic>Reproducibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yuming</creatorcontrib><creatorcontrib>Chen, Ze</creatorcontrib><creatorcontrib>Cui, Jiwen</creatorcontrib><creatorcontrib>Zhao, Haiying</creatorcontrib><creatorcontrib>Wang, Yunlong</creatorcontrib><creatorcontrib>Zhao, Huining</creatorcontrib><creatorcontrib>Tan, Jiubin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yuming</au><au>Chen, Ze</au><au>Cui, Jiwen</au><au>Zhao, Haiying</au><au>Wang, Yunlong</au><au>Zhao, Huining</au><au>Tan, Jiubin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fiber Probe Based on Dispersive Interferometry With an Improved Demodulation Algorithm</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract><![CDATA[We present a microfiber probe based on dispersive interferometry (FPDI) for measuring high-aspect ratio structures with an improved demodulation algorithm and an offset correction method. To accommodate the need for weak signal-to-noise signal demodulation and accurate measurements in FPDI applications, we propose a composite algorithm for dispersive interferometry to improve the accuracy and noise immunity. Then, to simplify the alignment process of the fiber probe, we propose an offset correction method based on an optimization algorithm. Experimental results show that the fiber probe with our proposed algorithm has less repeatability error and linearity in applications than traditional algorithms. The axial resolution of the fiber probe is better than <inline-formula> <tex-math notation="LaTeX">0.1~\mu \text{m} </tex-math></inline-formula>, with a repeatability error of <inline-formula> <tex-math notation="LaTeX">0.011~\mu \text{m} </tex-math></inline-formula> and a linearity of 0.03%. In addition, we measure a 1.2-mm standard ring gauge with FPDI. After correcting the offset, the difference between the measured diameter and the standard value is less than 0.03%.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2024.3385815</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0002-3982-2768</orcidid><orcidid>https://orcid.org/0000-0002-1305-4003</orcidid><orcidid>https://orcid.org/0000-0002-0941-7932</orcidid><orcidid>https://orcid.org/0009-0000-6085-4356</orcidid><orcidid>https://orcid.org/0009-0007-4317-0033</orcidid><orcidid>https://orcid.org/0000-0003-2480-1200</orcidid><orcidid>https://orcid.org/0009-0000-8959-1641</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-8
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_10494714
source IEEE Electronic Library (IEL)
subjects Absolute distance measurement
Adaptive optics
Algorithms
Aspect ratio
Demodulation
dispersion interferometry
Error analysis
Error correction
fiber probe
high-aspect-ratio structure measurement
Interference
Interferometry
Linearity
Microfibers
Optical fiber dispersion
Optical fibers
precision geometric measurement
Probes
Reproducibility
title Fiber Probe Based on Dispersive Interferometry With an Improved Demodulation Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A46%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fiber%20Probe%20Based%20on%20Dispersive%20Interferometry%20With%20an%20Improved%20Demodulation%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Chen,%20Yuming&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3385815&rft_dat=%3Cproquest_RIE%3E3133495327%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133495327&rft_id=info:pmid/&rft_ieee_id=10494714&rfr_iscdi=true