Asynchronous Distributed Reinforcement Learning for LQR Control via Zeroth-Order Block Coordinate Descent

Recently introduced distributed zeroth-order optimization (ZOO) algorithms have shown their utility in distributed reinforcement learning (RL). Unfortunately, in the gradient estimation process, almost all of them require random samples with the same dimension as the global variable and/or require e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2024-11, Vol.69 (11), p.7524-7539
Hauptverfasser: Jing, Gangshan, Bai, He, George, Jemin, Chakrabortty, Aranya, Sharma, Piyush K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7539
container_issue 11
container_start_page 7524
container_title IEEE transactions on automatic control
container_volume 69
creator Jing, Gangshan
Bai, He
George, Jemin
Chakrabortty, Aranya
Sharma, Piyush K.
description Recently introduced distributed zeroth-order optimization (ZOO) algorithms have shown their utility in distributed reinforcement learning (RL). Unfortunately, in the gradient estimation process, almost all of them require random samples with the same dimension as the global variable and/or require evaluation of the global cost function, which may induce high estimation variance for large-scale networks. In this paper, we propose a novel distributed zeroth-order algorithm by leveraging the network structure inherent in the optimization objective, which allows each agent to estimate its local gradient by local cost evaluation independently, without use of any consensus protocol. The proposed algorithm exhibits an asynchronous update scheme, and works for stochastic nonconvex optimization with a possibly nonconvex feasible domain based on the block coordinate descent method. The algorithm is later employed as a distributed model-free RL algorithm for distributed linear quadratic regulator design. We provide an empirical validation of the proposed algorithm to benchmark its performance on convergence rate and variance against a centralized ZOO algorithm.
doi_str_mv 10.1109/TAC.2024.3386061
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10494371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10494371</ieee_id><sourcerecordid>3120655653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-84a624188adb55f188ca058e27ac0b443943ab8042ea63d7004818e956ac607c3</originalsourceid><addsrcrecordid>eNpNkMtPAjEQxhujiYjePXho4nmxb8oRF18JCZHgxcum252VIrTYLib895bAwdO8vvlm8kPolpIBpWT0sBiXA0aYGHCuFVH0DPWolLpgkvFz1COE6mLEtLpEVymtcqmEoD3kxmnv7TIGH3YJT1zqoqt3HTR4Ds63IVrYgO_wFEz0zn_h3MLT9zkug-9iWONfZ_AnxNAti1lsIOLHdbDfeRxi47zpAE8g2WxxjS5as05wc4p99PH8tChfi-ns5a0cTwvLhOwKLYxigmptmlrKNifWEKmBDY0ltRB8JLipNREMjOLNkBChqYaRVMYqMrS8j-6PvtsYfnaQumoVdtHnkxWnjCgpleRZRY4qG0NKEdpqG93GxH1FSXUAWmWg1QFodQKaV-6OKw4A_slF_mhI-R8JE3Fy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120655653</pqid></control><display><type>article</type><title>Asynchronous Distributed Reinforcement Learning for LQR Control via Zeroth-Order Block Coordinate Descent</title><source>IEEE Electronic Library (IEL)</source><creator>Jing, Gangshan ; Bai, He ; George, Jemin ; Chakrabortty, Aranya ; Sharma, Piyush K.</creator><creatorcontrib>Jing, Gangshan ; Bai, He ; George, Jemin ; Chakrabortty, Aranya ; Sharma, Piyush K.</creatorcontrib><description>Recently introduced distributed zeroth-order optimization (ZOO) algorithms have shown their utility in distributed reinforcement learning (RL). Unfortunately, in the gradient estimation process, almost all of them require random samples with the same dimension as the global variable and/or require evaluation of the global cost function, which may induce high estimation variance for large-scale networks. In this paper, we propose a novel distributed zeroth-order algorithm by leveraging the network structure inherent in the optimization objective, which allows each agent to estimate its local gradient by local cost evaluation independently, without use of any consensus protocol. The proposed algorithm exhibits an asynchronous update scheme, and works for stochastic nonconvex optimization with a possibly nonconvex feasible domain based on the block coordinate descent method. The algorithm is later employed as a distributed model-free RL algorithm for distributed linear quadratic regulator design. We provide an empirical validation of the proposed algorithm to benchmark its performance on convergence rate and variance against a centralized ZOO algorithm.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2024.3386061</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Computer aided instruction ; Convergence ; Cost function ; Costs ; Design optimization ; Distance learning ; Distributed learning ; Estimation ; Hybrid learning ; Linear programming ; Linear quadratic regulator ; Machine learning ; multiagent systems (MASs) ; Optimization ; Reinforcement learning ; reinforcement learning (RL) ; Variance ; zeroth-order optimization (ZO)</subject><ispartof>IEEE transactions on automatic control, 2024-11, Vol.69 (11), p.7524-7539</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-84a624188adb55f188ca058e27ac0b443943ab8042ea63d7004818e956ac607c3</cites><orcidid>0000-0003-0066-204X ; 0000-0002-4247-0698 ; 0000-0002-3474-8215 ; 0000-0001-8417-5411 ; 0000-0001-8829-9390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10494371$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10494371$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jing, Gangshan</creatorcontrib><creatorcontrib>Bai, He</creatorcontrib><creatorcontrib>George, Jemin</creatorcontrib><creatorcontrib>Chakrabortty, Aranya</creatorcontrib><creatorcontrib>Sharma, Piyush K.</creatorcontrib><title>Asynchronous Distributed Reinforcement Learning for LQR Control via Zeroth-Order Block Coordinate Descent</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Recently introduced distributed zeroth-order optimization (ZOO) algorithms have shown their utility in distributed reinforcement learning (RL). Unfortunately, in the gradient estimation process, almost all of them require random samples with the same dimension as the global variable and/or require evaluation of the global cost function, which may induce high estimation variance for large-scale networks. In this paper, we propose a novel distributed zeroth-order algorithm by leveraging the network structure inherent in the optimization objective, which allows each agent to estimate its local gradient by local cost evaluation independently, without use of any consensus protocol. The proposed algorithm exhibits an asynchronous update scheme, and works for stochastic nonconvex optimization with a possibly nonconvex feasible domain based on the block coordinate descent method. The algorithm is later employed as a distributed model-free RL algorithm for distributed linear quadratic regulator design. We provide an empirical validation of the proposed algorithm to benchmark its performance on convergence rate and variance against a centralized ZOO algorithm.</description><subject>Algorithms</subject><subject>Computer aided instruction</subject><subject>Convergence</subject><subject>Cost function</subject><subject>Costs</subject><subject>Design optimization</subject><subject>Distance learning</subject><subject>Distributed learning</subject><subject>Estimation</subject><subject>Hybrid learning</subject><subject>Linear programming</subject><subject>Linear quadratic regulator</subject><subject>Machine learning</subject><subject>multiagent systems (MASs)</subject><subject>Optimization</subject><subject>Reinforcement learning</subject><subject>reinforcement learning (RL)</subject><subject>Variance</subject><subject>zeroth-order optimization (ZO)</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtPAjEQxhujiYjePXho4nmxb8oRF18JCZHgxcum252VIrTYLib895bAwdO8vvlm8kPolpIBpWT0sBiXA0aYGHCuFVH0DPWolLpgkvFz1COE6mLEtLpEVymtcqmEoD3kxmnv7TIGH3YJT1zqoqt3HTR4Ds63IVrYgO_wFEz0zn_h3MLT9zkug-9iWONfZ_AnxNAti1lsIOLHdbDfeRxi47zpAE8g2WxxjS5as05wc4p99PH8tChfi-ns5a0cTwvLhOwKLYxigmptmlrKNifWEKmBDY0ltRB8JLipNREMjOLNkBChqYaRVMYqMrS8j-6PvtsYfnaQumoVdtHnkxWnjCgpleRZRY4qG0NKEdpqG93GxH1FSXUAWmWg1QFodQKaV-6OKw4A_slF_mhI-R8JE3Fy</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Jing, Gangshan</creator><creator>Bai, He</creator><creator>George, Jemin</creator><creator>Chakrabortty, Aranya</creator><creator>Sharma, Piyush K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0066-204X</orcidid><orcidid>https://orcid.org/0000-0002-4247-0698</orcidid><orcidid>https://orcid.org/0000-0002-3474-8215</orcidid><orcidid>https://orcid.org/0000-0001-8417-5411</orcidid><orcidid>https://orcid.org/0000-0001-8829-9390</orcidid></search><sort><creationdate>20241101</creationdate><title>Asynchronous Distributed Reinforcement Learning for LQR Control via Zeroth-Order Block Coordinate Descent</title><author>Jing, Gangshan ; Bai, He ; George, Jemin ; Chakrabortty, Aranya ; Sharma, Piyush K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-84a624188adb55f188ca058e27ac0b443943ab8042ea63d7004818e956ac607c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computer aided instruction</topic><topic>Convergence</topic><topic>Cost function</topic><topic>Costs</topic><topic>Design optimization</topic><topic>Distance learning</topic><topic>Distributed learning</topic><topic>Estimation</topic><topic>Hybrid learning</topic><topic>Linear programming</topic><topic>Linear quadratic regulator</topic><topic>Machine learning</topic><topic>multiagent systems (MASs)</topic><topic>Optimization</topic><topic>Reinforcement learning</topic><topic>reinforcement learning (RL)</topic><topic>Variance</topic><topic>zeroth-order optimization (ZO)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jing, Gangshan</creatorcontrib><creatorcontrib>Bai, He</creatorcontrib><creatorcontrib>George, Jemin</creatorcontrib><creatorcontrib>Chakrabortty, Aranya</creatorcontrib><creatorcontrib>Sharma, Piyush K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jing, Gangshan</au><au>Bai, He</au><au>George, Jemin</au><au>Chakrabortty, Aranya</au><au>Sharma, Piyush K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asynchronous Distributed Reinforcement Learning for LQR Control via Zeroth-Order Block Coordinate Descent</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>69</volume><issue>11</issue><spage>7524</spage><epage>7539</epage><pages>7524-7539</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Recently introduced distributed zeroth-order optimization (ZOO) algorithms have shown their utility in distributed reinforcement learning (RL). Unfortunately, in the gradient estimation process, almost all of them require random samples with the same dimension as the global variable and/or require evaluation of the global cost function, which may induce high estimation variance for large-scale networks. In this paper, we propose a novel distributed zeroth-order algorithm by leveraging the network structure inherent in the optimization objective, which allows each agent to estimate its local gradient by local cost evaluation independently, without use of any consensus protocol. The proposed algorithm exhibits an asynchronous update scheme, and works for stochastic nonconvex optimization with a possibly nonconvex feasible domain based on the block coordinate descent method. The algorithm is later employed as a distributed model-free RL algorithm for distributed linear quadratic regulator design. We provide an empirical validation of the proposed algorithm to benchmark its performance on convergence rate and variance against a centralized ZOO algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2024.3386061</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0066-204X</orcidid><orcidid>https://orcid.org/0000-0002-4247-0698</orcidid><orcidid>https://orcid.org/0000-0002-3474-8215</orcidid><orcidid>https://orcid.org/0000-0001-8417-5411</orcidid><orcidid>https://orcid.org/0000-0001-8829-9390</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2024-11, Vol.69 (11), p.7524-7539
issn 0018-9286
1558-2523
language eng
recordid cdi_ieee_primary_10494371
source IEEE Electronic Library (IEL)
subjects Algorithms
Computer aided instruction
Convergence
Cost function
Costs
Design optimization
Distance learning
Distributed learning
Estimation
Hybrid learning
Linear programming
Linear quadratic regulator
Machine learning
multiagent systems (MASs)
Optimization
Reinforcement learning
reinforcement learning (RL)
Variance
zeroth-order optimization (ZO)
title Asynchronous Distributed Reinforcement Learning for LQR Control via Zeroth-Order Block Coordinate Descent
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asynchronous%20Distributed%20Reinforcement%20Learning%20for%20LQR%20Control%20via%20Zeroth-Order%20Block%20Coordinate%20Descent&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Jing,%20Gangshan&rft.date=2024-11-01&rft.volume=69&rft.issue=11&rft.spage=7524&rft.epage=7539&rft.pages=7524-7539&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2024.3386061&rft_dat=%3Cproquest_RIE%3E3120655653%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120655653&rft_id=info:pmid/&rft_ieee_id=10494371&rfr_iscdi=true