Cramer-Rao Lower Bound for Frequency Estimation of Sinusoidal Signals
Frequency estimation of sinusoidal signals, with wide-ranging applications, has been a fundamental topic in signal processing for some time. The Cramer-Rao lower bound (CRLB) is widely known as the threshold for the minimum variance when estimating the frequency of sinusoidal signals. Numerous previ...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-7 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 73 |
creator | Dai, Erhan Su, Linfei Ge, Yan |
description | Frequency estimation of sinusoidal signals, with wide-ranging applications, has been a fundamental topic in signal processing for some time. The Cramer-Rao lower bound (CRLB) is widely known as the threshold for the minimum variance when estimating the frequency of sinusoidal signals. Numerous previous studies simplified the numerical evaluation of CRLB, often assuming a linear relationship between the CRLB and the length of utilized data records. The actual values of CRLBs for the frequency estimation of sinusoidal signals are derived and calculated using the original formula of the CRLB and numerical testing methods. Experimental results indicate the following: 1) at a specific frequency, the value of CRLB is a range determined by the initial phase and recording length N ; and 2) the waveforms used to obtain the maximum and minimum values of CRLB exhibit either even or odd symmetry at different frequencies. This attribute is used to obtain the value of the CRLB without significant computations. Given the widespread use of zero-initial-phase signals in engineering and research, we focused on this scenario, examining the CRLB values across various frequencies for potential future applications. |
doi_str_mv | 10.1109/TIM.2024.3385832 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10494327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10494327</ieee_id><sourcerecordid>3041499674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-3659085ca8b554fd4bfa83331c6d08fbd098cdb3892f68fc06a6e1ca2c80da0c3</originalsourceid><addsrcrecordid>eNpNkE1LAzEURYMoWKt7Fy4Crqe-fE6y1NJqoSJoXYdMJpEp7aQmM0j_fae0C1f3Le59HA5C9wQmhIB-Wi3eJxQonzCmhGL0Ao2IEGWhpaSXaARAVKG5kNfoJuc1AJSSlyM0mya79an4tBEv459P-CX2bY1DTHie_G_vW7fHs9w1W9s1scUx4K-m7XNsarsZzp_WbvItugpD-LtzjtH3fLaavhXLj9fF9HlZOMpFVzApNCjhrKqE4KHmVbCKMUacrEGFqgatXF0xpWmQKjiQVnriLHUKaguOjdHj6e8uxQEtd2Yd-3QkMAw44VrLkg8tOLVcijknH8wuDfhpbwiYoywzyDJHWeYsa5g8nCaN9_5fnWvOaMkOaVJlSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041499674</pqid></control><display><type>article</type><title>Cramer-Rao Lower Bound for Frequency Estimation of Sinusoidal Signals</title><source>IEEE Electronic Library (IEL)</source><creator>Dai, Erhan ; Su, Linfei ; Ge, Yan</creator><creatorcontrib>Dai, Erhan ; Su, Linfei ; Ge, Yan</creatorcontrib><description>Frequency estimation of sinusoidal signals, with wide-ranging applications, has been a fundamental topic in signal processing for some time. The Cramer-Rao lower bound (CRLB) is widely known as the threshold for the minimum variance when estimating the frequency of sinusoidal signals. Numerous previous studies simplified the numerical evaluation of CRLB, often assuming a linear relationship between the CRLB and the length of utilized data records. The actual values of CRLBs for the frequency estimation of sinusoidal signals are derived and calculated using the original formula of the CRLB and numerical testing methods. Experimental results indicate the following: 1) at a specific frequency, the value of CRLB is a range determined by the initial phase and recording length <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula>; and 2) the waveforms used to obtain the maximum and minimum values of CRLB exhibit either even or odd symmetry at different frequencies. This attribute is used to obtain the value of the CRLB without significant computations. Given the widespread use of zero-initial-phase signals in engineering and research, we focused on this scenario, examining the CRLB values across various frequencies for potential future applications.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3385832</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biomedical measurement ; Cramer–Rao lower bound (CRLB) ; Estimation ; Frequency estimation ; initial phase ; Lower bounds ; Mathematical models ; Numerical methods ; Recording ; Signal processing ; Signal processing algorithms ; Signal to noise ratio ; Sine waves ; sinusoidal signals ; Voltage measurement ; Waveforms</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-7</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-3659085ca8b554fd4bfa83331c6d08fbd098cdb3892f68fc06a6e1ca2c80da0c3</cites><orcidid>0009-0005-5618-6099 ; 0009-0001-6511-9681 ; 0000-0002-9810-8081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10494327$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,4025,27924,27925,27926,54759</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10494327$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dai, Erhan</creatorcontrib><creatorcontrib>Su, Linfei</creatorcontrib><creatorcontrib>Ge, Yan</creatorcontrib><title>Cramer-Rao Lower Bound for Frequency Estimation of Sinusoidal Signals</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Frequency estimation of sinusoidal signals, with wide-ranging applications, has been a fundamental topic in signal processing for some time. The Cramer-Rao lower bound (CRLB) is widely known as the threshold for the minimum variance when estimating the frequency of sinusoidal signals. Numerous previous studies simplified the numerical evaluation of CRLB, often assuming a linear relationship between the CRLB and the length of utilized data records. The actual values of CRLBs for the frequency estimation of sinusoidal signals are derived and calculated using the original formula of the CRLB and numerical testing methods. Experimental results indicate the following: 1) at a specific frequency, the value of CRLB is a range determined by the initial phase and recording length <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula>; and 2) the waveforms used to obtain the maximum and minimum values of CRLB exhibit either even or odd symmetry at different frequencies. This attribute is used to obtain the value of the CRLB without significant computations. Given the widespread use of zero-initial-phase signals in engineering and research, we focused on this scenario, examining the CRLB values across various frequencies for potential future applications.</description><subject>Biomedical measurement</subject><subject>Cramer–Rao lower bound (CRLB)</subject><subject>Estimation</subject><subject>Frequency estimation</subject><subject>initial phase</subject><subject>Lower bounds</subject><subject>Mathematical models</subject><subject>Numerical methods</subject><subject>Recording</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Signal to noise ratio</subject><subject>Sine waves</subject><subject>sinusoidal signals</subject><subject>Voltage measurement</subject><subject>Waveforms</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEURYMoWKt7Fy4Crqe-fE6y1NJqoSJoXYdMJpEp7aQmM0j_fae0C1f3Le59HA5C9wQmhIB-Wi3eJxQonzCmhGL0Ao2IEGWhpaSXaARAVKG5kNfoJuc1AJSSlyM0mya79an4tBEv459P-CX2bY1DTHie_G_vW7fHs9w1W9s1scUx4K-m7XNsarsZzp_WbvItugpD-LtzjtH3fLaavhXLj9fF9HlZOMpFVzApNCjhrKqE4KHmVbCKMUacrEGFqgatXF0xpWmQKjiQVnriLHUKaguOjdHj6e8uxQEtd2Yd-3QkMAw44VrLkg8tOLVcijknH8wuDfhpbwiYoywzyDJHWeYsa5g8nCaN9_5fnWvOaMkOaVJlSQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Dai, Erhan</creator><creator>Su, Linfei</creator><creator>Ge, Yan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0005-5618-6099</orcidid><orcidid>https://orcid.org/0009-0001-6511-9681</orcidid><orcidid>https://orcid.org/0000-0002-9810-8081</orcidid></search><sort><creationdate>2024</creationdate><title>Cramer-Rao Lower Bound for Frequency Estimation of Sinusoidal Signals</title><author>Dai, Erhan ; Su, Linfei ; Ge, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-3659085ca8b554fd4bfa83331c6d08fbd098cdb3892f68fc06a6e1ca2c80da0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomedical measurement</topic><topic>Cramer–Rao lower bound (CRLB)</topic><topic>Estimation</topic><topic>Frequency estimation</topic><topic>initial phase</topic><topic>Lower bounds</topic><topic>Mathematical models</topic><topic>Numerical methods</topic><topic>Recording</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Signal to noise ratio</topic><topic>Sine waves</topic><topic>sinusoidal signals</topic><topic>Voltage measurement</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Erhan</creatorcontrib><creatorcontrib>Su, Linfei</creatorcontrib><creatorcontrib>Ge, Yan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dai, Erhan</au><au>Su, Linfei</au><au>Ge, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cramer-Rao Lower Bound for Frequency Estimation of Sinusoidal Signals</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Frequency estimation of sinusoidal signals, with wide-ranging applications, has been a fundamental topic in signal processing for some time. The Cramer-Rao lower bound (CRLB) is widely known as the threshold for the minimum variance when estimating the frequency of sinusoidal signals. Numerous previous studies simplified the numerical evaluation of CRLB, often assuming a linear relationship between the CRLB and the length of utilized data records. The actual values of CRLBs for the frequency estimation of sinusoidal signals are derived and calculated using the original formula of the CRLB and numerical testing methods. Experimental results indicate the following: 1) at a specific frequency, the value of CRLB is a range determined by the initial phase and recording length <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula>; and 2) the waveforms used to obtain the maximum and minimum values of CRLB exhibit either even or odd symmetry at different frequencies. This attribute is used to obtain the value of the CRLB without significant computations. Given the widespread use of zero-initial-phase signals in engineering and research, we focused on this scenario, examining the CRLB values across various frequencies for potential future applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2024.3385832</doi><tpages>7</tpages><orcidid>https://orcid.org/0009-0005-5618-6099</orcidid><orcidid>https://orcid.org/0009-0001-6511-9681</orcidid><orcidid>https://orcid.org/0000-0002-9810-8081</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-7 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_10494327 |
source | IEEE Electronic Library (IEL) |
subjects | Biomedical measurement Cramer–Rao lower bound (CRLB) Estimation Frequency estimation initial phase Lower bounds Mathematical models Numerical methods Recording Signal processing Signal processing algorithms Signal to noise ratio Sine waves sinusoidal signals Voltage measurement Waveforms |
title | Cramer-Rao Lower Bound for Frequency Estimation of Sinusoidal Signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A13%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cramer-Rao%20Lower%20Bound%20for%20Frequency%20Estimation%20of%20Sinusoidal%20Signals&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Dai,%20Erhan&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3385832&rft_dat=%3Cproquest_RIE%3E3041499674%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3041499674&rft_id=info:pmid/&rft_ieee_id=10494327&rfr_iscdi=true |