An Analytical Approach for Evaluating Turn-On Switching Losses in SiC MOSFET With Kelvin Pin: Concept and Implementation
With the progressive adoption of silicon carbide (SiC) power devices in modern power converters, exploiting their superior efficiency, faster switching speed, and higher power density, an understanding of the factors influencing these properties becomes vital. One such critical factor is switching l...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2024-05, Vol.71 (5), p.3116-3122 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3122 |
---|---|
container_issue | 5 |
container_start_page | 3116 |
container_title | IEEE transactions on electron devices |
container_volume | 71 |
creator | Mohammed Cherif, O. Nadji, B. Tadjer, S. A. Bencherif, H. |
description | With the progressive adoption of silicon carbide (SiC) power devices in modern power converters, exploiting their superior efficiency, faster switching speed, and higher power density, an understanding of the factors influencing these properties becomes vital. One such critical factor is switching losses, which can drastically affect overall system performance. This study develops and presents a new analytical model for predicting the turn-on switching losses in SiC MOSFETs with Kelvin pin. The proposed model, derived from a carefully constructed set of nonlinear differential equations, accounts for the nonlinearity of the transconductance by incorporating a novel transfer characteristic model. The model also incorporates the nonlinear junction capacitances effects. The developed analytical model allows for the prediction and optimization of turn-on switching losses in SiC MOSFETs, thus enabling improved energy efficiency and reliability. The accuracy of the proposed model is verified through comparison with experimental results obtained using the double pulse test board that was designed and constructed, demonstrating its applicability for the investigation of SiC MOSFET power losses. |
doi_str_mv | 10.1109/TED.2024.3382072 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10492857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10492857</ieee_id><sourcerecordid>3044618488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-7477d2a520eab6fb32deff2708f0fca6cdab8f4f18a2f506c88dd16f950ec6813</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EEqWwMzBYYk7xVxyHLQoFKoqK1CJGy3VsapQ6IXEL_e9x1Q5Mp3t6907vB8A1RiOMUX63GD-MCCJsRKkgKCMnYIDTNEtyzvgpGCCERZJTQc_BRd9_xZUzRgbgt_Cw8KreBadVDYu27RqlV9A2HRxvVb1RwflPuNh0Ppl5OP9xQa_2yrTpe9NDFzVXwtfZ_HG8gB8urOCLqbdRfnP-HpaN16YNUPkKTtZtbdbGhxjZ-EtwZlXdm6vjHIL3mFA-J9PZ06QspokmLA1JxrKsIiolyKglt0tKKmMtyZCwyGrFdaWWwjKLhSI2RVwLUVWY2zxFRnOB6RDcHnJjse-N6YP8amKZ-FJSxBjHggkRXejg0l3s1Rkr286tVbeTGMk9Xxn5yj1feeQbT24OJ84Y88_OciLSjP4B-VB2-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044618488</pqid></control><display><type>article</type><title>An Analytical Approach for Evaluating Turn-On Switching Losses in SiC MOSFET With Kelvin Pin: Concept and Implementation</title><source>IEEE Electronic Library (IEL)</source><creator>Mohammed Cherif, O. ; Nadji, B. ; Tadjer, S. A. ; Bencherif, H.</creator><creatorcontrib>Mohammed Cherif, O. ; Nadji, B. ; Tadjer, S. A. ; Bencherif, H.</creatorcontrib><description>With the progressive adoption of silicon carbide (SiC) power devices in modern power converters, exploiting their superior efficiency, faster switching speed, and higher power density, an understanding of the factors influencing these properties becomes vital. One such critical factor is switching losses, which can drastically affect overall system performance. This study develops and presents a new analytical model for predicting the turn-on switching losses in SiC MOSFETs with Kelvin pin. The proposed model, derived from a carefully constructed set of nonlinear differential equations, accounts for the nonlinearity of the transconductance by incorporating a novel transfer characteristic model. The model also incorporates the nonlinear junction capacitances effects. The developed analytical model allows for the prediction and optimization of turn-on switching losses in SiC MOSFETs, thus enabling improved energy efficiency and reliability. The accuracy of the proposed model is verified through comparison with experimental results obtained using the double pulse test board that was designed and constructed, demonstrating its applicability for the investigation of SiC MOSFET power losses.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2024.3382072</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Capacitance ; Double pulse test ; Integrated circuit modeling ; Mathematical analysis ; Mathematical models ; modeling ; MOSFET ; MOSFETs ; Nonlinear differential equations ; Nonlinearity ; Power converters ; Power management ; Semiconductor device modeling ; Silicon carbide ; silicon carbide (SiC) MOSFET ; Switching ; switching losses ; Transconductance</subject><ispartof>IEEE transactions on electron devices, 2024-05, Vol.71 (5), p.3116-3122</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-7477d2a520eab6fb32deff2708f0fca6cdab8f4f18a2f506c88dd16f950ec6813</cites><orcidid>0000-0002-4881-0147 ; 0000-0002-9715-8992 ; 0000-0001-6050-8453 ; 0000-0001-6936-605X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10492857$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10492857$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mohammed Cherif, O.</creatorcontrib><creatorcontrib>Nadji, B.</creatorcontrib><creatorcontrib>Tadjer, S. A.</creatorcontrib><creatorcontrib>Bencherif, H.</creatorcontrib><title>An Analytical Approach for Evaluating Turn-On Switching Losses in SiC MOSFET With Kelvin Pin: Concept and Implementation</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>With the progressive adoption of silicon carbide (SiC) power devices in modern power converters, exploiting their superior efficiency, faster switching speed, and higher power density, an understanding of the factors influencing these properties becomes vital. One such critical factor is switching losses, which can drastically affect overall system performance. This study develops and presents a new analytical model for predicting the turn-on switching losses in SiC MOSFETs with Kelvin pin. The proposed model, derived from a carefully constructed set of nonlinear differential equations, accounts for the nonlinearity of the transconductance by incorporating a novel transfer characteristic model. The model also incorporates the nonlinear junction capacitances effects. The developed analytical model allows for the prediction and optimization of turn-on switching losses in SiC MOSFETs, thus enabling improved energy efficiency and reliability. The accuracy of the proposed model is verified through comparison with experimental results obtained using the double pulse test board that was designed and constructed, demonstrating its applicability for the investigation of SiC MOSFET power losses.</description><subject>Analytical models</subject><subject>Capacitance</subject><subject>Double pulse test</subject><subject>Integrated circuit modeling</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>modeling</subject><subject>MOSFET</subject><subject>MOSFETs</subject><subject>Nonlinear differential equations</subject><subject>Nonlinearity</subject><subject>Power converters</subject><subject>Power management</subject><subject>Semiconductor device modeling</subject><subject>Silicon carbide</subject><subject>silicon carbide (SiC) MOSFET</subject><subject>Switching</subject><subject>switching losses</subject><subject>Transconductance</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAQxS0EEqWwMzBYYk7xVxyHLQoFKoqK1CJGy3VsapQ6IXEL_e9x1Q5Mp3t6907vB8A1RiOMUX63GD-MCCJsRKkgKCMnYIDTNEtyzvgpGCCERZJTQc_BRd9_xZUzRgbgt_Cw8KreBadVDYu27RqlV9A2HRxvVb1RwflPuNh0Ppl5OP9xQa_2yrTpe9NDFzVXwtfZ_HG8gB8urOCLqbdRfnP-HpaN16YNUPkKTtZtbdbGhxjZ-EtwZlXdm6vjHIL3mFA-J9PZ06QspokmLA1JxrKsIiolyKglt0tKKmMtyZCwyGrFdaWWwjKLhSI2RVwLUVWY2zxFRnOB6RDcHnJjse-N6YP8amKZ-FJSxBjHggkRXejg0l3s1Rkr286tVbeTGMk9Xxn5yj1feeQbT24OJ84Y88_OciLSjP4B-VB2-g</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Mohammed Cherif, O.</creator><creator>Nadji, B.</creator><creator>Tadjer, S. A.</creator><creator>Bencherif, H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4881-0147</orcidid><orcidid>https://orcid.org/0000-0002-9715-8992</orcidid><orcidid>https://orcid.org/0000-0001-6050-8453</orcidid><orcidid>https://orcid.org/0000-0001-6936-605X</orcidid></search><sort><creationdate>20240501</creationdate><title>An Analytical Approach for Evaluating Turn-On Switching Losses in SiC MOSFET With Kelvin Pin: Concept and Implementation</title><author>Mohammed Cherif, O. ; Nadji, B. ; Tadjer, S. A. ; Bencherif, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-7477d2a520eab6fb32deff2708f0fca6cdab8f4f18a2f506c88dd16f950ec6813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analytical models</topic><topic>Capacitance</topic><topic>Double pulse test</topic><topic>Integrated circuit modeling</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>modeling</topic><topic>MOSFET</topic><topic>MOSFETs</topic><topic>Nonlinear differential equations</topic><topic>Nonlinearity</topic><topic>Power converters</topic><topic>Power management</topic><topic>Semiconductor device modeling</topic><topic>Silicon carbide</topic><topic>silicon carbide (SiC) MOSFET</topic><topic>Switching</topic><topic>switching losses</topic><topic>Transconductance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohammed Cherif, O.</creatorcontrib><creatorcontrib>Nadji, B.</creatorcontrib><creatorcontrib>Tadjer, S. A.</creatorcontrib><creatorcontrib>Bencherif, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mohammed Cherif, O.</au><au>Nadji, B.</au><au>Tadjer, S. A.</au><au>Bencherif, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Analytical Approach for Evaluating Turn-On Switching Losses in SiC MOSFET With Kelvin Pin: Concept and Implementation</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>71</volume><issue>5</issue><spage>3116</spage><epage>3122</epage><pages>3116-3122</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>With the progressive adoption of silicon carbide (SiC) power devices in modern power converters, exploiting their superior efficiency, faster switching speed, and higher power density, an understanding of the factors influencing these properties becomes vital. One such critical factor is switching losses, which can drastically affect overall system performance. This study develops and presents a new analytical model for predicting the turn-on switching losses in SiC MOSFETs with Kelvin pin. The proposed model, derived from a carefully constructed set of nonlinear differential equations, accounts for the nonlinearity of the transconductance by incorporating a novel transfer characteristic model. The model also incorporates the nonlinear junction capacitances effects. The developed analytical model allows for the prediction and optimization of turn-on switching losses in SiC MOSFETs, thus enabling improved energy efficiency and reliability. The accuracy of the proposed model is verified through comparison with experimental results obtained using the double pulse test board that was designed and constructed, demonstrating its applicability for the investigation of SiC MOSFET power losses.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2024.3382072</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4881-0147</orcidid><orcidid>https://orcid.org/0000-0002-9715-8992</orcidid><orcidid>https://orcid.org/0000-0001-6050-8453</orcidid><orcidid>https://orcid.org/0000-0001-6936-605X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2024-05, Vol.71 (5), p.3116-3122 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_ieee_primary_10492857 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical models Capacitance Double pulse test Integrated circuit modeling Mathematical analysis Mathematical models modeling MOSFET MOSFETs Nonlinear differential equations Nonlinearity Power converters Power management Semiconductor device modeling Silicon carbide silicon carbide (SiC) MOSFET Switching switching losses Transconductance |
title | An Analytical Approach for Evaluating Turn-On Switching Losses in SiC MOSFET With Kelvin Pin: Concept and Implementation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A37%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Analytical%20Approach%20for%20Evaluating%20Turn-On%20Switching%20Losses%20in%20SiC%20MOSFET%20With%20Kelvin%20Pin:%20Concept%20and%20Implementation&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Mohammed%20Cherif,%20O.&rft.date=2024-05-01&rft.volume=71&rft.issue=5&rft.spage=3116&rft.epage=3122&rft.pages=3116-3122&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2024.3382072&rft_dat=%3Cproquest_RIE%3E3044618488%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044618488&rft_id=info:pmid/&rft_ieee_id=10492857&rfr_iscdi=true |