Evolutionary Ensemble Learning for EEG-Based Cross-Subject Emotion Recognition
Electroencephalogram (EEG) has been widely utilized in emotion recognition due to its high temporal resolution and reliability. However, the individual differences and non-stationary characteristics of EEG, along with the complexity and variability of emotions, pose challenges in generalizing emotio...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2024-07, Vol.28 (7), p.3872-3881 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3881 |
---|---|
container_issue | 7 |
container_start_page | 3872 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 28 |
creator | Zhang, Hanzhong Zuo, Tienyu Chen, Zhiyang Wang, Xin Sun, Poly Z.H. |
description | Electroencephalogram (EEG) has been widely utilized in emotion recognition due to its high temporal resolution and reliability. However, the individual differences and non-stationary characteristics of EEG, along with the complexity and variability of emotions, pose challenges in generalizing emotion recognition models across subjects. In this paper, an end-to-end framework is proposed to improve the performance of cross-subject emotion recognition. A novel evolutionary programming (EP)-based optimization strategy with neural network (NN) as the base classifier termed NN ensemble with EP (EPNNE) is designed for cross-subject emotion recognition. The effectiveness of the proposed method is evaluated on the publicly available DEAP, FACED, SEED, and SEED-IV datasets. Numerical results demonstrate that the proposed method is superior to state-of-the-art cross-subject emotion recognition methods. The proposed end-to-end framework for cross-subject emotion recognition aids biomedical researchers in effectively assessing individual emotional states, thereby enabling efficient treatment and interventions. |
doi_str_mv | 10.1109/JBHI.2024.3384816 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10490105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10490105</ieee_id><sourcerecordid>3075372578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-61b92152931ea261a496fee78375d2753acc6c7179c34e06c3281014c7c71c533</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMoOqY_QBApeONNZ06-mly6UTdlKPhxXbrsTDraZjat4L83dZuIuckhvO_DyUPIOdARADU3D-PZ_YhRJkaca6FBHZABA6Vjxqg-3M9gxAk5835NwwkhbdQxOeHaSCGlHpDH9NOVXVu4Om--orT2WC1KjOaYN3VRv0cr10RpOo3HucdlNGmc9_FLt1ijbaO0cn0xekbr3uuin0_J0SovPZ7t7iF5u0tfJ7N4_jS9n9zOY8spa2MFC8NAMsMBc6YgF0atEBPNE7lkieS5tcomkBjLBVJlOdNAQdgkPFrJ-ZBcb7mbxn106NusKrzFssxrdJ3POA2QhMlAHJKrf9G165o6bPeTEpAo0QNhm7L9FxtcZZumqIKTDGjW-85631nvO9v5Dp3LHblbVLj8bezthsDFNlAg4h-gMBSo5N-DsYE7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075417643</pqid></control><display><type>article</type><title>Evolutionary Ensemble Learning for EEG-Based Cross-Subject Emotion Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Hanzhong ; Zuo, Tienyu ; Chen, Zhiyang ; Wang, Xin ; Sun, Poly Z.H.</creator><creatorcontrib>Zhang, Hanzhong ; Zuo, Tienyu ; Chen, Zhiyang ; Wang, Xin ; Sun, Poly Z.H.</creatorcontrib><description>Electroencephalogram (EEG) has been widely utilized in emotion recognition due to its high temporal resolution and reliability. However, the individual differences and non-stationary characteristics of EEG, along with the complexity and variability of emotions, pose challenges in generalizing emotion recognition models across subjects. In this paper, an end-to-end framework is proposed to improve the performance of cross-subject emotion recognition. A novel evolutionary programming (EP)-based optimization strategy with neural network (NN) as the base classifier termed NN ensemble with EP (EPNNE) is designed for cross-subject emotion recognition. The effectiveness of the proposed method is evaluated on the publicly available DEAP, FACED, SEED, and SEED-IV datasets. Numerical results demonstrate that the proposed method is superior to state-of-the-art cross-subject emotion recognition methods. The proposed end-to-end framework for cross-subject emotion recognition aids biomedical researchers in effectively assessing individual emotional states, thereby enabling efficient treatment and interventions.</description><identifier>ISSN: 2168-2194</identifier><identifier>ISSN: 2168-2208</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2024.3384816</identifier><identifier>PMID: 38954558</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation models ; Adult ; Algorithms ; Biological neural networks ; Brain modeling ; Cross-subject transfer learning ; Data models ; Databases, Factual ; EEG ; Effectiveness ; electro- encephalogram ; Electroencephalography ; Electroencephalography - methods ; Emotion recognition ; Emotional factors ; Emotions ; Emotions - physiology ; Ensemble learning ; Evolutionary algorithms ; Feature extraction ; Female ; Humans ; Machine Learning ; Male ; Medical research ; Neural networks ; Neural Networks, Computer ; Pattern Recognition, Automated - methods ; Signal Processing, Computer-Assisted ; Temporal resolution</subject><ispartof>IEEE journal of biomedical and health informatics, 2024-07, Vol.28 (7), p.3872-3881</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-61b92152931ea261a496fee78375d2753acc6c7179c34e06c3281014c7c71c533</cites><orcidid>0000-0003-3352-6829 ; 0000-0002-7049-6430 ; 0000-0002-8850-0047 ; 0000-0002-9030-8839 ; 0000-0001-6156-1766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10490105$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10490105$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38954558$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Hanzhong</creatorcontrib><creatorcontrib>Zuo, Tienyu</creatorcontrib><creatorcontrib>Chen, Zhiyang</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Sun, Poly Z.H.</creatorcontrib><title>Evolutionary Ensemble Learning for EEG-Based Cross-Subject Emotion Recognition</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Electroencephalogram (EEG) has been widely utilized in emotion recognition due to its high temporal resolution and reliability. However, the individual differences and non-stationary characteristics of EEG, along with the complexity and variability of emotions, pose challenges in generalizing emotion recognition models across subjects. In this paper, an end-to-end framework is proposed to improve the performance of cross-subject emotion recognition. A novel evolutionary programming (EP)-based optimization strategy with neural network (NN) as the base classifier termed NN ensemble with EP (EPNNE) is designed for cross-subject emotion recognition. The effectiveness of the proposed method is evaluated on the publicly available DEAP, FACED, SEED, and SEED-IV datasets. Numerical results demonstrate that the proposed method is superior to state-of-the-art cross-subject emotion recognition methods. The proposed end-to-end framework for cross-subject emotion recognition aids biomedical researchers in effectively assessing individual emotional states, thereby enabling efficient treatment and interventions.</description><subject>Adaptation models</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Biological neural networks</subject><subject>Brain modeling</subject><subject>Cross-subject transfer learning</subject><subject>Data models</subject><subject>Databases, Factual</subject><subject>EEG</subject><subject>Effectiveness</subject><subject>electro- encephalogram</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Emotion recognition</subject><subject>Emotional factors</subject><subject>Emotions</subject><subject>Emotions - physiology</subject><subject>Ensemble learning</subject><subject>Evolutionary algorithms</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Medical research</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Temporal resolution</subject><issn>2168-2194</issn><issn>2168-2208</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkF1LwzAUhoMoOqY_QBApeONNZ06-mly6UTdlKPhxXbrsTDraZjat4L83dZuIuckhvO_DyUPIOdARADU3D-PZ_YhRJkaca6FBHZABA6Vjxqg-3M9gxAk5835NwwkhbdQxOeHaSCGlHpDH9NOVXVu4Om--orT2WC1KjOaYN3VRv0cr10RpOo3HucdlNGmc9_FLt1ijbaO0cn0xekbr3uuin0_J0SovPZ7t7iF5u0tfJ7N4_jS9n9zOY8spa2MFC8NAMsMBc6YgF0atEBPNE7lkieS5tcomkBjLBVJlOdNAQdgkPFrJ-ZBcb7mbxn106NusKrzFssxrdJ3POA2QhMlAHJKrf9G165o6bPeTEpAo0QNhm7L9FxtcZZumqIKTDGjW-85631nvO9v5Dp3LHblbVLj8bezthsDFNlAg4h-gMBSo5N-DsYE7</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Zhang, Hanzhong</creator><creator>Zuo, Tienyu</creator><creator>Chen, Zhiyang</creator><creator>Wang, Xin</creator><creator>Sun, Poly Z.H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3352-6829</orcidid><orcidid>https://orcid.org/0000-0002-7049-6430</orcidid><orcidid>https://orcid.org/0000-0002-8850-0047</orcidid><orcidid>https://orcid.org/0000-0002-9030-8839</orcidid><orcidid>https://orcid.org/0000-0001-6156-1766</orcidid></search><sort><creationdate>20240701</creationdate><title>Evolutionary Ensemble Learning for EEG-Based Cross-Subject Emotion Recognition</title><author>Zhang, Hanzhong ; Zuo, Tienyu ; Chen, Zhiyang ; Wang, Xin ; Sun, Poly Z.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-61b92152931ea261a496fee78375d2753acc6c7179c34e06c3281014c7c71c533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Biological neural networks</topic><topic>Brain modeling</topic><topic>Cross-subject transfer learning</topic><topic>Data models</topic><topic>Databases, Factual</topic><topic>EEG</topic><topic>Effectiveness</topic><topic>electro- encephalogram</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Emotion recognition</topic><topic>Emotional factors</topic><topic>Emotions</topic><topic>Emotions - physiology</topic><topic>Ensemble learning</topic><topic>Evolutionary algorithms</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Medical research</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Temporal resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hanzhong</creatorcontrib><creatorcontrib>Zuo, Tienyu</creatorcontrib><creatorcontrib>Chen, Zhiyang</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Sun, Poly Z.H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Hanzhong</au><au>Zuo, Tienyu</au><au>Chen, Zhiyang</au><au>Wang, Xin</au><au>Sun, Poly Z.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary Ensemble Learning for EEG-Based Cross-Subject Emotion Recognition</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>28</volume><issue>7</issue><spage>3872</spage><epage>3881</epage><pages>3872-3881</pages><issn>2168-2194</issn><issn>2168-2208</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Electroencephalogram (EEG) has been widely utilized in emotion recognition due to its high temporal resolution and reliability. However, the individual differences and non-stationary characteristics of EEG, along with the complexity and variability of emotions, pose challenges in generalizing emotion recognition models across subjects. In this paper, an end-to-end framework is proposed to improve the performance of cross-subject emotion recognition. A novel evolutionary programming (EP)-based optimization strategy with neural network (NN) as the base classifier termed NN ensemble with EP (EPNNE) is designed for cross-subject emotion recognition. The effectiveness of the proposed method is evaluated on the publicly available DEAP, FACED, SEED, and SEED-IV datasets. Numerical results demonstrate that the proposed method is superior to state-of-the-art cross-subject emotion recognition methods. The proposed end-to-end framework for cross-subject emotion recognition aids biomedical researchers in effectively assessing individual emotional states, thereby enabling efficient treatment and interventions.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38954558</pmid><doi>10.1109/JBHI.2024.3384816</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3352-6829</orcidid><orcidid>https://orcid.org/0000-0002-7049-6430</orcidid><orcidid>https://orcid.org/0000-0002-8850-0047</orcidid><orcidid>https://orcid.org/0000-0002-9030-8839</orcidid><orcidid>https://orcid.org/0000-0001-6156-1766</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2024-07, Vol.28 (7), p.3872-3881 |
issn | 2168-2194 2168-2208 2168-2208 |
language | eng |
recordid | cdi_ieee_primary_10490105 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Adult Algorithms Biological neural networks Brain modeling Cross-subject transfer learning Data models Databases, Factual EEG Effectiveness electro- encephalogram Electroencephalography Electroencephalography - methods Emotion recognition Emotional factors Emotions Emotions - physiology Ensemble learning Evolutionary algorithms Feature extraction Female Humans Machine Learning Male Medical research Neural networks Neural Networks, Computer Pattern Recognition, Automated - methods Signal Processing, Computer-Assisted Temporal resolution |
title | Evolutionary Ensemble Learning for EEG-Based Cross-Subject Emotion Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T12%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20Ensemble%20Learning%20for%20EEG-Based%20Cross-Subject%20Emotion%20Recognition&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Zhang,%20Hanzhong&rft.date=2024-07-01&rft.volume=28&rft.issue=7&rft.spage=3872&rft.epage=3881&rft.pages=3872-3881&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2024.3384816&rft_dat=%3Cproquest_RIE%3E3075372578%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075417643&rft_id=info:pmid/38954558&rft_ieee_id=10490105&rfr_iscdi=true |