Evolutionary Ensemble Learning for EEG-Based Cross-Subject Emotion Recognition

Electroencephalogram (EEG) has been widely utilized in emotion recognition due to its high temporal resolution and reliability. However, the individual differences and non-stationary characteristics of EEG, along with the complexity and variability of emotions, pose challenges in generalizing emotio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2024-07, Vol.28 (7), p.3872-3881
Hauptverfasser: Zhang, Hanzhong, Zuo, Tienyu, Chen, Zhiyang, Wang, Xin, Sun, Poly Z.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3881
container_issue 7
container_start_page 3872
container_title IEEE journal of biomedical and health informatics
container_volume 28
creator Zhang, Hanzhong
Zuo, Tienyu
Chen, Zhiyang
Wang, Xin
Sun, Poly Z.H.
description Electroencephalogram (EEG) has been widely utilized in emotion recognition due to its high temporal resolution and reliability. However, the individual differences and non-stationary characteristics of EEG, along with the complexity and variability of emotions, pose challenges in generalizing emotion recognition models across subjects. In this paper, an end-to-end framework is proposed to improve the performance of cross-subject emotion recognition. A novel evolutionary programming (EP)-based optimization strategy with neural network (NN) as the base classifier termed NN ensemble with EP (EPNNE) is designed for cross-subject emotion recognition. The effectiveness of the proposed method is evaluated on the publicly available DEAP, FACED, SEED, and SEED-IV datasets. Numerical results demonstrate that the proposed method is superior to state-of-the-art cross-subject emotion recognition methods. The proposed end-to-end framework for cross-subject emotion recognition aids biomedical researchers in effectively assessing individual emotional states, thereby enabling efficient treatment and interventions.
doi_str_mv 10.1109/JBHI.2024.3384816
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10490105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10490105</ieee_id><sourcerecordid>3075372578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-61b92152931ea261a496fee78375d2753acc6c7179c34e06c3281014c7c71c533</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMoOqY_QBApeONNZ06-mly6UTdlKPhxXbrsTDraZjat4L83dZuIuckhvO_DyUPIOdARADU3D-PZ_YhRJkaca6FBHZABA6Vjxqg-3M9gxAk5835NwwkhbdQxOeHaSCGlHpDH9NOVXVu4Om--orT2WC1KjOaYN3VRv0cr10RpOo3HucdlNGmc9_FLt1ijbaO0cn0xekbr3uuin0_J0SovPZ7t7iF5u0tfJ7N4_jS9n9zOY8spa2MFC8NAMsMBc6YgF0atEBPNE7lkieS5tcomkBjLBVJlOdNAQdgkPFrJ-ZBcb7mbxn106NusKrzFssxrdJ3POA2QhMlAHJKrf9G165o6bPeTEpAo0QNhm7L9FxtcZZumqIKTDGjW-85631nvO9v5Dp3LHblbVLj8bezthsDFNlAg4h-gMBSo5N-DsYE7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075417643</pqid></control><display><type>article</type><title>Evolutionary Ensemble Learning for EEG-Based Cross-Subject Emotion Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Hanzhong ; Zuo, Tienyu ; Chen, Zhiyang ; Wang, Xin ; Sun, Poly Z.H.</creator><creatorcontrib>Zhang, Hanzhong ; Zuo, Tienyu ; Chen, Zhiyang ; Wang, Xin ; Sun, Poly Z.H.</creatorcontrib><description>Electroencephalogram (EEG) has been widely utilized in emotion recognition due to its high temporal resolution and reliability. However, the individual differences and non-stationary characteristics of EEG, along with the complexity and variability of emotions, pose challenges in generalizing emotion recognition models across subjects. In this paper, an end-to-end framework is proposed to improve the performance of cross-subject emotion recognition. A novel evolutionary programming (EP)-based optimization strategy with neural network (NN) as the base classifier termed NN ensemble with EP (EPNNE) is designed for cross-subject emotion recognition. The effectiveness of the proposed method is evaluated on the publicly available DEAP, FACED, SEED, and SEED-IV datasets. Numerical results demonstrate that the proposed method is superior to state-of-the-art cross-subject emotion recognition methods. The proposed end-to-end framework for cross-subject emotion recognition aids biomedical researchers in effectively assessing individual emotional states, thereby enabling efficient treatment and interventions.</description><identifier>ISSN: 2168-2194</identifier><identifier>ISSN: 2168-2208</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2024.3384816</identifier><identifier>PMID: 38954558</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation models ; Adult ; Algorithms ; Biological neural networks ; Brain modeling ; Cross-subject transfer learning ; Data models ; Databases, Factual ; EEG ; Effectiveness ; electro- encephalogram ; Electroencephalography ; Electroencephalography - methods ; Emotion recognition ; Emotional factors ; Emotions ; Emotions - physiology ; Ensemble learning ; Evolutionary algorithms ; Feature extraction ; Female ; Humans ; Machine Learning ; Male ; Medical research ; Neural networks ; Neural Networks, Computer ; Pattern Recognition, Automated - methods ; Signal Processing, Computer-Assisted ; Temporal resolution</subject><ispartof>IEEE journal of biomedical and health informatics, 2024-07, Vol.28 (7), p.3872-3881</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-61b92152931ea261a496fee78375d2753acc6c7179c34e06c3281014c7c71c533</cites><orcidid>0000-0003-3352-6829 ; 0000-0002-7049-6430 ; 0000-0002-8850-0047 ; 0000-0002-9030-8839 ; 0000-0001-6156-1766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10490105$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10490105$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38954558$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Hanzhong</creatorcontrib><creatorcontrib>Zuo, Tienyu</creatorcontrib><creatorcontrib>Chen, Zhiyang</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Sun, Poly Z.H.</creatorcontrib><title>Evolutionary Ensemble Learning for EEG-Based Cross-Subject Emotion Recognition</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Electroencephalogram (EEG) has been widely utilized in emotion recognition due to its high temporal resolution and reliability. However, the individual differences and non-stationary characteristics of EEG, along with the complexity and variability of emotions, pose challenges in generalizing emotion recognition models across subjects. In this paper, an end-to-end framework is proposed to improve the performance of cross-subject emotion recognition. A novel evolutionary programming (EP)-based optimization strategy with neural network (NN) as the base classifier termed NN ensemble with EP (EPNNE) is designed for cross-subject emotion recognition. The effectiveness of the proposed method is evaluated on the publicly available DEAP, FACED, SEED, and SEED-IV datasets. Numerical results demonstrate that the proposed method is superior to state-of-the-art cross-subject emotion recognition methods. The proposed end-to-end framework for cross-subject emotion recognition aids biomedical researchers in effectively assessing individual emotional states, thereby enabling efficient treatment and interventions.</description><subject>Adaptation models</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Biological neural networks</subject><subject>Brain modeling</subject><subject>Cross-subject transfer learning</subject><subject>Data models</subject><subject>Databases, Factual</subject><subject>EEG</subject><subject>Effectiveness</subject><subject>electro- encephalogram</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Emotion recognition</subject><subject>Emotional factors</subject><subject>Emotions</subject><subject>Emotions - physiology</subject><subject>Ensemble learning</subject><subject>Evolutionary algorithms</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Medical research</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Temporal resolution</subject><issn>2168-2194</issn><issn>2168-2208</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkF1LwzAUhoMoOqY_QBApeONNZ06-mly6UTdlKPhxXbrsTDraZjat4L83dZuIuckhvO_DyUPIOdARADU3D-PZ_YhRJkaca6FBHZABA6Vjxqg-3M9gxAk5835NwwkhbdQxOeHaSCGlHpDH9NOVXVu4Om--orT2WC1KjOaYN3VRv0cr10RpOo3HucdlNGmc9_FLt1ijbaO0cn0xekbr3uuin0_J0SovPZ7t7iF5u0tfJ7N4_jS9n9zOY8spa2MFC8NAMsMBc6YgF0atEBPNE7lkieS5tcomkBjLBVJlOdNAQdgkPFrJ-ZBcb7mbxn106NusKrzFssxrdJ3POA2QhMlAHJKrf9G165o6bPeTEpAo0QNhm7L9FxtcZZumqIKTDGjW-85631nvO9v5Dp3LHblbVLj8bezthsDFNlAg4h-gMBSo5N-DsYE7</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Zhang, Hanzhong</creator><creator>Zuo, Tienyu</creator><creator>Chen, Zhiyang</creator><creator>Wang, Xin</creator><creator>Sun, Poly Z.H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3352-6829</orcidid><orcidid>https://orcid.org/0000-0002-7049-6430</orcidid><orcidid>https://orcid.org/0000-0002-8850-0047</orcidid><orcidid>https://orcid.org/0000-0002-9030-8839</orcidid><orcidid>https://orcid.org/0000-0001-6156-1766</orcidid></search><sort><creationdate>20240701</creationdate><title>Evolutionary Ensemble Learning for EEG-Based Cross-Subject Emotion Recognition</title><author>Zhang, Hanzhong ; Zuo, Tienyu ; Chen, Zhiyang ; Wang, Xin ; Sun, Poly Z.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-61b92152931ea261a496fee78375d2753acc6c7179c34e06c3281014c7c71c533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Biological neural networks</topic><topic>Brain modeling</topic><topic>Cross-subject transfer learning</topic><topic>Data models</topic><topic>Databases, Factual</topic><topic>EEG</topic><topic>Effectiveness</topic><topic>electro- encephalogram</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Emotion recognition</topic><topic>Emotional factors</topic><topic>Emotions</topic><topic>Emotions - physiology</topic><topic>Ensemble learning</topic><topic>Evolutionary algorithms</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Medical research</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Temporal resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hanzhong</creatorcontrib><creatorcontrib>Zuo, Tienyu</creatorcontrib><creatorcontrib>Chen, Zhiyang</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Sun, Poly Z.H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Hanzhong</au><au>Zuo, Tienyu</au><au>Chen, Zhiyang</au><au>Wang, Xin</au><au>Sun, Poly Z.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary Ensemble Learning for EEG-Based Cross-Subject Emotion Recognition</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>28</volume><issue>7</issue><spage>3872</spage><epage>3881</epage><pages>3872-3881</pages><issn>2168-2194</issn><issn>2168-2208</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Electroencephalogram (EEG) has been widely utilized in emotion recognition due to its high temporal resolution and reliability. However, the individual differences and non-stationary characteristics of EEG, along with the complexity and variability of emotions, pose challenges in generalizing emotion recognition models across subjects. In this paper, an end-to-end framework is proposed to improve the performance of cross-subject emotion recognition. A novel evolutionary programming (EP)-based optimization strategy with neural network (NN) as the base classifier termed NN ensemble with EP (EPNNE) is designed for cross-subject emotion recognition. The effectiveness of the proposed method is evaluated on the publicly available DEAP, FACED, SEED, and SEED-IV datasets. Numerical results demonstrate that the proposed method is superior to state-of-the-art cross-subject emotion recognition methods. The proposed end-to-end framework for cross-subject emotion recognition aids biomedical researchers in effectively assessing individual emotional states, thereby enabling efficient treatment and interventions.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38954558</pmid><doi>10.1109/JBHI.2024.3384816</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3352-6829</orcidid><orcidid>https://orcid.org/0000-0002-7049-6430</orcidid><orcidid>https://orcid.org/0000-0002-8850-0047</orcidid><orcidid>https://orcid.org/0000-0002-9030-8839</orcidid><orcidid>https://orcid.org/0000-0001-6156-1766</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2024-07, Vol.28 (7), p.3872-3881
issn 2168-2194
2168-2208
2168-2208
language eng
recordid cdi_ieee_primary_10490105
source IEEE Electronic Library (IEL)
subjects Adaptation models
Adult
Algorithms
Biological neural networks
Brain modeling
Cross-subject transfer learning
Data models
Databases, Factual
EEG
Effectiveness
electro- encephalogram
Electroencephalography
Electroencephalography - methods
Emotion recognition
Emotional factors
Emotions
Emotions - physiology
Ensemble learning
Evolutionary algorithms
Feature extraction
Female
Humans
Machine Learning
Male
Medical research
Neural networks
Neural Networks, Computer
Pattern Recognition, Automated - methods
Signal Processing, Computer-Assisted
Temporal resolution
title Evolutionary Ensemble Learning for EEG-Based Cross-Subject Emotion Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T12%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20Ensemble%20Learning%20for%20EEG-Based%20Cross-Subject%20Emotion%20Recognition&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Zhang,%20Hanzhong&rft.date=2024-07-01&rft.volume=28&rft.issue=7&rft.spage=3872&rft.epage=3881&rft.pages=3872-3881&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2024.3384816&rft_dat=%3Cproquest_RIE%3E3075372578%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075417643&rft_id=info:pmid/38954558&rft_ieee_id=10490105&rfr_iscdi=true