Indoor and Outdoor 3D Scene Graph Generation Via Language-Enabled Spatial Ontologies

This paper proposes an approach to build 3D scene graphs in arbitrary indoor and outdoor environments. Such extension is challenging; the hierarchy of concepts that describe an outdoor environment is more complex than for indoors, and manually defining such hierarchy is time-consuming and does not s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2024-06, Vol.9 (6), p.1-8
Hauptverfasser: Strader, Jared, Hughes, Nathan, Chen, William, Speranzon, Alberto, Carlone, Luca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 6
container_start_page 1
container_title IEEE robotics and automation letters
container_volume 9
creator Strader, Jared
Hughes, Nathan
Chen, William
Speranzon, Alberto
Carlone, Luca
description This paper proposes an approach to build 3D scene graphs in arbitrary indoor and outdoor environments. Such extension is challenging; the hierarchy of concepts that describe an outdoor environment is more complex than for indoors, and manually defining such hierarchy is time-consuming and does not scale. Furthermore, the lack of training data prevents the straightforward application of learning-based tools used in indoor settings. To address these challenges, we propose two novel extensions. First, we develop methods to build a spatial ontology defining concepts and relations relevant for indoor and outdoor robot operation. In particular, we use a Large Language Model (LLM) to build such an ontology, thus largely reducing the amount of manual effort required. Second, we leverage the spatial ontology for 3D scene graph construction using Logic Tensor Networks (LTN) to add logical rules, or axioms (e.g., "a beach contains sand"), which provide additional supervisory signals at training time thus reducing the need for labelled data, providing better predictions, and even allowing predicting concepts unseen at training time. We test our approach in a variety of datasets, including indoor, rural, and coastal environments, and show that it leads to a significant increase in the quality of the 3D scene graph generation with sparsely annotated data.
doi_str_mv 10.1109/LRA.2024.3384084
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10487851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10487851</ieee_id><sourcerecordid>3040055670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-ea9bfdd0206c836d49e04c550af8ba673a51c50a7afedf967312899af8833b423</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EElXpzsBgiTnl_BU7Y1VKqRSpEi2slpM4JVWwg5MM_Pe4lKHTvbv37k76IXRPYE4IZE_522JOgfI5Y4qD4ldoQpmUCZNpen2hb9Gs748AQASVLBMTtN-4yvuAjavwdhz-NHvGu9I6i9fBdJ94HWUwQ-Md_mgMzo07jOZgk5UzRWsrvOuiaVq8dYNv_aGx_R26qU3b29l_naL3l9V--Zrk2_VmuciTknIxJNZkRV1VQCEtFUsrnlngpRBgalWYVDIjSBk7aWpb1VkcEKqyLLqKsYJTNkWP57td8N-j7Qd99GNw8aVmwAGESCXEFJxTZfB9H2ytu9B8mfCjCegTPh3x6RM-_Y8vrjycVxpr7UWcK6kEYb-N7Go2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040055670</pqid></control><display><type>article</type><title>Indoor and Outdoor 3D Scene Graph Generation Via Language-Enabled Spatial Ontologies</title><source>IEEE Electronic Library (IEL)</source><creator>Strader, Jared ; Hughes, Nathan ; Chen, William ; Speranzon, Alberto ; Carlone, Luca</creator><creatorcontrib>Strader, Jared ; Hughes, Nathan ; Chen, William ; Speranzon, Alberto ; Carlone, Luca</creatorcontrib><description>This paper proposes an approach to build 3D scene graphs in arbitrary indoor and outdoor environments. Such extension is challenging; the hierarchy of concepts that describe an outdoor environment is more complex than for indoors, and manually defining such hierarchy is time-consuming and does not scale. Furthermore, the lack of training data prevents the straightforward application of learning-based tools used in indoor settings. To address these challenges, we propose two novel extensions. First, we develop methods to build a spatial ontology defining concepts and relations relevant for indoor and outdoor robot operation. In particular, we use a Large Language Model (LLM) to build such an ontology, thus largely reducing the amount of manual effort required. Second, we leverage the spatial ontology for 3D scene graph construction using Logic Tensor Networks (LTN) to add logical rules, or axioms (e.g., "a beach contains sand"), which provide additional supervisory signals at training time thus reducing the need for labelled data, providing better predictions, and even allowing predicting concepts unseen at training time. We test our approach in a variety of datasets, including indoor, rural, and coastal environments, and show that it leads to a significant increase in the quality of the 3D scene graph generation with sparsely annotated data.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2024.3384084</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3D scene graphs ; AI-based methods ; Axioms ; Coastal environments ; Large language models ; Ontologies ; Ontology ; Predictions ; Robots ; Rural environments ; Semantic scene understanding ; Semantics ; Solid modeling ; spatial ontologies ; Tensors ; Three-dimensional displays ; Training ; Training data</subject><ispartof>IEEE robotics and automation letters, 2024-06, Vol.9 (6), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-ea9bfdd0206c836d49e04c550af8ba673a51c50a7afedf967312899af8833b423</cites><orcidid>0000-0002-1201-7032 ; 0000-0003-1884-5397 ; 0000-0002-9203-2901 ; 0000-0002-3978-9542 ; 0009-0002-9193-9197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10487851$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10487851$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Strader, Jared</creatorcontrib><creatorcontrib>Hughes, Nathan</creatorcontrib><creatorcontrib>Chen, William</creatorcontrib><creatorcontrib>Speranzon, Alberto</creatorcontrib><creatorcontrib>Carlone, Luca</creatorcontrib><title>Indoor and Outdoor 3D Scene Graph Generation Via Language-Enabled Spatial Ontologies</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>This paper proposes an approach to build 3D scene graphs in arbitrary indoor and outdoor environments. Such extension is challenging; the hierarchy of concepts that describe an outdoor environment is more complex than for indoors, and manually defining such hierarchy is time-consuming and does not scale. Furthermore, the lack of training data prevents the straightforward application of learning-based tools used in indoor settings. To address these challenges, we propose two novel extensions. First, we develop methods to build a spatial ontology defining concepts and relations relevant for indoor and outdoor robot operation. In particular, we use a Large Language Model (LLM) to build such an ontology, thus largely reducing the amount of manual effort required. Second, we leverage the spatial ontology for 3D scene graph construction using Logic Tensor Networks (LTN) to add logical rules, or axioms (e.g., "a beach contains sand"), which provide additional supervisory signals at training time thus reducing the need for labelled data, providing better predictions, and even allowing predicting concepts unseen at training time. We test our approach in a variety of datasets, including indoor, rural, and coastal environments, and show that it leads to a significant increase in the quality of the 3D scene graph generation with sparsely annotated data.</description><subject>3D scene graphs</subject><subject>AI-based methods</subject><subject>Axioms</subject><subject>Coastal environments</subject><subject>Large language models</subject><subject>Ontologies</subject><subject>Ontology</subject><subject>Predictions</subject><subject>Robots</subject><subject>Rural environments</subject><subject>Semantic scene understanding</subject><subject>Semantics</subject><subject>Solid modeling</subject><subject>spatial ontologies</subject><subject>Tensors</subject><subject>Three-dimensional displays</subject><subject>Training</subject><subject>Training data</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAQxS0EElXpzsBgiTnl_BU7Y1VKqRSpEi2slpM4JVWwg5MM_Pe4lKHTvbv37k76IXRPYE4IZE_522JOgfI5Y4qD4ldoQpmUCZNpen2hb9Gs748AQASVLBMTtN-4yvuAjavwdhz-NHvGu9I6i9fBdJ94HWUwQ-Md_mgMzo07jOZgk5UzRWsrvOuiaVq8dYNv_aGx_R26qU3b29l_naL3l9V--Zrk2_VmuciTknIxJNZkRV1VQCEtFUsrnlngpRBgalWYVDIjSBk7aWpb1VkcEKqyLLqKsYJTNkWP57td8N-j7Qd99GNw8aVmwAGESCXEFJxTZfB9H2ytu9B8mfCjCegTPh3x6RM-_Y8vrjycVxpr7UWcK6kEYb-N7Go2</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Strader, Jared</creator><creator>Hughes, Nathan</creator><creator>Chen, William</creator><creator>Speranzon, Alberto</creator><creator>Carlone, Luca</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1201-7032</orcidid><orcidid>https://orcid.org/0000-0003-1884-5397</orcidid><orcidid>https://orcid.org/0000-0002-9203-2901</orcidid><orcidid>https://orcid.org/0000-0002-3978-9542</orcidid><orcidid>https://orcid.org/0009-0002-9193-9197</orcidid></search><sort><creationdate>20240601</creationdate><title>Indoor and Outdoor 3D Scene Graph Generation Via Language-Enabled Spatial Ontologies</title><author>Strader, Jared ; Hughes, Nathan ; Chen, William ; Speranzon, Alberto ; Carlone, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-ea9bfdd0206c836d49e04c550af8ba673a51c50a7afedf967312899af8833b423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D scene graphs</topic><topic>AI-based methods</topic><topic>Axioms</topic><topic>Coastal environments</topic><topic>Large language models</topic><topic>Ontologies</topic><topic>Ontology</topic><topic>Predictions</topic><topic>Robots</topic><topic>Rural environments</topic><topic>Semantic scene understanding</topic><topic>Semantics</topic><topic>Solid modeling</topic><topic>spatial ontologies</topic><topic>Tensors</topic><topic>Three-dimensional displays</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strader, Jared</creatorcontrib><creatorcontrib>Hughes, Nathan</creatorcontrib><creatorcontrib>Chen, William</creatorcontrib><creatorcontrib>Speranzon, Alberto</creatorcontrib><creatorcontrib>Carlone, Luca</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Strader, Jared</au><au>Hughes, Nathan</au><au>Chen, William</au><au>Speranzon, Alberto</au><au>Carlone, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Indoor and Outdoor 3D Scene Graph Generation Via Language-Enabled Spatial Ontologies</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>9</volume><issue>6</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>This paper proposes an approach to build 3D scene graphs in arbitrary indoor and outdoor environments. Such extension is challenging; the hierarchy of concepts that describe an outdoor environment is more complex than for indoors, and manually defining such hierarchy is time-consuming and does not scale. Furthermore, the lack of training data prevents the straightforward application of learning-based tools used in indoor settings. To address these challenges, we propose two novel extensions. First, we develop methods to build a spatial ontology defining concepts and relations relevant for indoor and outdoor robot operation. In particular, we use a Large Language Model (LLM) to build such an ontology, thus largely reducing the amount of manual effort required. Second, we leverage the spatial ontology for 3D scene graph construction using Logic Tensor Networks (LTN) to add logical rules, or axioms (e.g., "a beach contains sand"), which provide additional supervisory signals at training time thus reducing the need for labelled data, providing better predictions, and even allowing predicting concepts unseen at training time. We test our approach in a variety of datasets, including indoor, rural, and coastal environments, and show that it leads to a significant increase in the quality of the 3D scene graph generation with sparsely annotated data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2024.3384084</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1201-7032</orcidid><orcidid>https://orcid.org/0000-0003-1884-5397</orcidid><orcidid>https://orcid.org/0000-0002-9203-2901</orcidid><orcidid>https://orcid.org/0000-0002-3978-9542</orcidid><orcidid>https://orcid.org/0009-0002-9193-9197</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2024-06, Vol.9 (6), p.1-8
issn 2377-3766
2377-3766
language eng
recordid cdi_ieee_primary_10487851
source IEEE Electronic Library (IEL)
subjects 3D scene graphs
AI-based methods
Axioms
Coastal environments
Large language models
Ontologies
Ontology
Predictions
Robots
Rural environments
Semantic scene understanding
Semantics
Solid modeling
spatial ontologies
Tensors
Three-dimensional displays
Training
Training data
title Indoor and Outdoor 3D Scene Graph Generation Via Language-Enabled Spatial Ontologies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Indoor%20and%20Outdoor%203D%20Scene%20Graph%20Generation%20Via%20Language-Enabled%20Spatial%20Ontologies&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Strader,%20Jared&rft.date=2024-06-01&rft.volume=9&rft.issue=6&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2024.3384084&rft_dat=%3Cproquest_RIE%3E3040055670%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040055670&rft_id=info:pmid/&rft_ieee_id=10487851&rfr_iscdi=true