Indoor and Outdoor 3D Scene Graph Generation Via Language-Enabled Spatial Ontologies
This paper proposes an approach to build 3D scene graphs in arbitrary indoor and outdoor environments. Such extension is challenging; the hierarchy of concepts that describe an outdoor environment is more complex than for indoors, and manually defining such hierarchy is time-consuming and does not s...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2024-06, Vol.9 (6), p.1-8 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE robotics and automation letters |
container_volume | 9 |
creator | Strader, Jared Hughes, Nathan Chen, William Speranzon, Alberto Carlone, Luca |
description | This paper proposes an approach to build 3D scene graphs in arbitrary indoor and outdoor environments. Such extension is challenging; the hierarchy of concepts that describe an outdoor environment is more complex than for indoors, and manually defining such hierarchy is time-consuming and does not scale. Furthermore, the lack of training data prevents the straightforward application of learning-based tools used in indoor settings. To address these challenges, we propose two novel extensions. First, we develop methods to build a spatial ontology defining concepts and relations relevant for indoor and outdoor robot operation. In particular, we use a Large Language Model (LLM) to build such an ontology, thus largely reducing the amount of manual effort required. Second, we leverage the spatial ontology for 3D scene graph construction using Logic Tensor Networks (LTN) to add logical rules, or axioms (e.g., "a beach contains sand"), which provide additional supervisory signals at training time thus reducing the need for labelled data, providing better predictions, and even allowing predicting concepts unseen at training time. We test our approach in a variety of datasets, including indoor, rural, and coastal environments, and show that it leads to a significant increase in the quality of the 3D scene graph generation with sparsely annotated data. |
doi_str_mv | 10.1109/LRA.2024.3384084 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10487851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10487851</ieee_id><sourcerecordid>3040055670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-ea9bfdd0206c836d49e04c550af8ba673a51c50a7afedf967312899af8833b423</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EElXpzsBgiTnl_BU7Y1VKqRSpEi2slpM4JVWwg5MM_Pe4lKHTvbv37k76IXRPYE4IZE_522JOgfI5Y4qD4ldoQpmUCZNpen2hb9Gs748AQASVLBMTtN-4yvuAjavwdhz-NHvGu9I6i9fBdJ94HWUwQ-Md_mgMzo07jOZgk5UzRWsrvOuiaVq8dYNv_aGx_R26qU3b29l_naL3l9V--Zrk2_VmuciTknIxJNZkRV1VQCEtFUsrnlngpRBgalWYVDIjSBk7aWpb1VkcEKqyLLqKsYJTNkWP57td8N-j7Qd99GNw8aVmwAGESCXEFJxTZfB9H2ytu9B8mfCjCegTPh3x6RM-_Y8vrjycVxpr7UWcK6kEYb-N7Go2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040055670</pqid></control><display><type>article</type><title>Indoor and Outdoor 3D Scene Graph Generation Via Language-Enabled Spatial Ontologies</title><source>IEEE Electronic Library (IEL)</source><creator>Strader, Jared ; Hughes, Nathan ; Chen, William ; Speranzon, Alberto ; Carlone, Luca</creator><creatorcontrib>Strader, Jared ; Hughes, Nathan ; Chen, William ; Speranzon, Alberto ; Carlone, Luca</creatorcontrib><description>This paper proposes an approach to build 3D scene graphs in arbitrary indoor and outdoor environments. Such extension is challenging; the hierarchy of concepts that describe an outdoor environment is more complex than for indoors, and manually defining such hierarchy is time-consuming and does not scale. Furthermore, the lack of training data prevents the straightforward application of learning-based tools used in indoor settings. To address these challenges, we propose two novel extensions. First, we develop methods to build a spatial ontology defining concepts and relations relevant for indoor and outdoor robot operation. In particular, we use a Large Language Model (LLM) to build such an ontology, thus largely reducing the amount of manual effort required. Second, we leverage the spatial ontology for 3D scene graph construction using Logic Tensor Networks (LTN) to add logical rules, or axioms (e.g., "a beach contains sand"), which provide additional supervisory signals at training time thus reducing the need for labelled data, providing better predictions, and even allowing predicting concepts unseen at training time. We test our approach in a variety of datasets, including indoor, rural, and coastal environments, and show that it leads to a significant increase in the quality of the 3D scene graph generation with sparsely annotated data.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2024.3384084</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3D scene graphs ; AI-based methods ; Axioms ; Coastal environments ; Large language models ; Ontologies ; Ontology ; Predictions ; Robots ; Rural environments ; Semantic scene understanding ; Semantics ; Solid modeling ; spatial ontologies ; Tensors ; Three-dimensional displays ; Training ; Training data</subject><ispartof>IEEE robotics and automation letters, 2024-06, Vol.9 (6), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-ea9bfdd0206c836d49e04c550af8ba673a51c50a7afedf967312899af8833b423</cites><orcidid>0000-0002-1201-7032 ; 0000-0003-1884-5397 ; 0000-0002-9203-2901 ; 0000-0002-3978-9542 ; 0009-0002-9193-9197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10487851$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10487851$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Strader, Jared</creatorcontrib><creatorcontrib>Hughes, Nathan</creatorcontrib><creatorcontrib>Chen, William</creatorcontrib><creatorcontrib>Speranzon, Alberto</creatorcontrib><creatorcontrib>Carlone, Luca</creatorcontrib><title>Indoor and Outdoor 3D Scene Graph Generation Via Language-Enabled Spatial Ontologies</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>This paper proposes an approach to build 3D scene graphs in arbitrary indoor and outdoor environments. Such extension is challenging; the hierarchy of concepts that describe an outdoor environment is more complex than for indoors, and manually defining such hierarchy is time-consuming and does not scale. Furthermore, the lack of training data prevents the straightforward application of learning-based tools used in indoor settings. To address these challenges, we propose two novel extensions. First, we develop methods to build a spatial ontology defining concepts and relations relevant for indoor and outdoor robot operation. In particular, we use a Large Language Model (LLM) to build such an ontology, thus largely reducing the amount of manual effort required. Second, we leverage the spatial ontology for 3D scene graph construction using Logic Tensor Networks (LTN) to add logical rules, or axioms (e.g., "a beach contains sand"), which provide additional supervisory signals at training time thus reducing the need for labelled data, providing better predictions, and even allowing predicting concepts unseen at training time. We test our approach in a variety of datasets, including indoor, rural, and coastal environments, and show that it leads to a significant increase in the quality of the 3D scene graph generation with sparsely annotated data.</description><subject>3D scene graphs</subject><subject>AI-based methods</subject><subject>Axioms</subject><subject>Coastal environments</subject><subject>Large language models</subject><subject>Ontologies</subject><subject>Ontology</subject><subject>Predictions</subject><subject>Robots</subject><subject>Rural environments</subject><subject>Semantic scene understanding</subject><subject>Semantics</subject><subject>Solid modeling</subject><subject>spatial ontologies</subject><subject>Tensors</subject><subject>Three-dimensional displays</subject><subject>Training</subject><subject>Training data</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAQxS0EElXpzsBgiTnl_BU7Y1VKqRSpEi2slpM4JVWwg5MM_Pe4lKHTvbv37k76IXRPYE4IZE_522JOgfI5Y4qD4ldoQpmUCZNpen2hb9Gs748AQASVLBMTtN-4yvuAjavwdhz-NHvGu9I6i9fBdJ94HWUwQ-Md_mgMzo07jOZgk5UzRWsrvOuiaVq8dYNv_aGx_R26qU3b29l_naL3l9V--Zrk2_VmuciTknIxJNZkRV1VQCEtFUsrnlngpRBgalWYVDIjSBk7aWpb1VkcEKqyLLqKsYJTNkWP57td8N-j7Qd99GNw8aVmwAGESCXEFJxTZfB9H2ytu9B8mfCjCegTPh3x6RM-_Y8vrjycVxpr7UWcK6kEYb-N7Go2</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Strader, Jared</creator><creator>Hughes, Nathan</creator><creator>Chen, William</creator><creator>Speranzon, Alberto</creator><creator>Carlone, Luca</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1201-7032</orcidid><orcidid>https://orcid.org/0000-0003-1884-5397</orcidid><orcidid>https://orcid.org/0000-0002-9203-2901</orcidid><orcidid>https://orcid.org/0000-0002-3978-9542</orcidid><orcidid>https://orcid.org/0009-0002-9193-9197</orcidid></search><sort><creationdate>20240601</creationdate><title>Indoor and Outdoor 3D Scene Graph Generation Via Language-Enabled Spatial Ontologies</title><author>Strader, Jared ; Hughes, Nathan ; Chen, William ; Speranzon, Alberto ; Carlone, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-ea9bfdd0206c836d49e04c550af8ba673a51c50a7afedf967312899af8833b423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D scene graphs</topic><topic>AI-based methods</topic><topic>Axioms</topic><topic>Coastal environments</topic><topic>Large language models</topic><topic>Ontologies</topic><topic>Ontology</topic><topic>Predictions</topic><topic>Robots</topic><topic>Rural environments</topic><topic>Semantic scene understanding</topic><topic>Semantics</topic><topic>Solid modeling</topic><topic>spatial ontologies</topic><topic>Tensors</topic><topic>Three-dimensional displays</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strader, Jared</creatorcontrib><creatorcontrib>Hughes, Nathan</creatorcontrib><creatorcontrib>Chen, William</creatorcontrib><creatorcontrib>Speranzon, Alberto</creatorcontrib><creatorcontrib>Carlone, Luca</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Strader, Jared</au><au>Hughes, Nathan</au><au>Chen, William</au><au>Speranzon, Alberto</au><au>Carlone, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Indoor and Outdoor 3D Scene Graph Generation Via Language-Enabled Spatial Ontologies</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>9</volume><issue>6</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>This paper proposes an approach to build 3D scene graphs in arbitrary indoor and outdoor environments. Such extension is challenging; the hierarchy of concepts that describe an outdoor environment is more complex than for indoors, and manually defining such hierarchy is time-consuming and does not scale. Furthermore, the lack of training data prevents the straightforward application of learning-based tools used in indoor settings. To address these challenges, we propose two novel extensions. First, we develop methods to build a spatial ontology defining concepts and relations relevant for indoor and outdoor robot operation. In particular, we use a Large Language Model (LLM) to build such an ontology, thus largely reducing the amount of manual effort required. Second, we leverage the spatial ontology for 3D scene graph construction using Logic Tensor Networks (LTN) to add logical rules, or axioms (e.g., "a beach contains sand"), which provide additional supervisory signals at training time thus reducing the need for labelled data, providing better predictions, and even allowing predicting concepts unseen at training time. We test our approach in a variety of datasets, including indoor, rural, and coastal environments, and show that it leads to a significant increase in the quality of the 3D scene graph generation with sparsely annotated data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2024.3384084</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1201-7032</orcidid><orcidid>https://orcid.org/0000-0003-1884-5397</orcidid><orcidid>https://orcid.org/0000-0002-9203-2901</orcidid><orcidid>https://orcid.org/0000-0002-3978-9542</orcidid><orcidid>https://orcid.org/0009-0002-9193-9197</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2024-06, Vol.9 (6), p.1-8 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_ieee_primary_10487851 |
source | IEEE Electronic Library (IEL) |
subjects | 3D scene graphs AI-based methods Axioms Coastal environments Large language models Ontologies Ontology Predictions Robots Rural environments Semantic scene understanding Semantics Solid modeling spatial ontologies Tensors Three-dimensional displays Training Training data |
title | Indoor and Outdoor 3D Scene Graph Generation Via Language-Enabled Spatial Ontologies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Indoor%20and%20Outdoor%203D%20Scene%20Graph%20Generation%20Via%20Language-Enabled%20Spatial%20Ontologies&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Strader,%20Jared&rft.date=2024-06-01&rft.volume=9&rft.issue=6&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2024.3384084&rft_dat=%3Cproquest_RIE%3E3040055670%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040055670&rft_id=info:pmid/&rft_ieee_id=10487851&rfr_iscdi=true |