Sparse Magnetic Array for the Imaging of Defects in Multilayer Metals

This study presents a novel eddy current sensing method for imaging defect distribution in multilayered nonferrous metal plates using an array of magnetic sensors. This method involves dividing the metal plate into small voxels to facilitate reconstruction and uses multifrequency to excite the coil....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-05, Vol.24 (9), p.14082-14092
Hauptverfasser: Li, Wei-Chen, Lin, Chun-Yeon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14092
container_issue 9
container_start_page 14082
container_title IEEE sensors journal
container_volume 24
creator Li, Wei-Chen
Lin, Chun-Yeon
description This study presents a novel eddy current sensing method for imaging defect distribution in multilayered nonferrous metal plates using an array of magnetic sensors. This method involves dividing the metal plate into small voxels to facilitate reconstruction and uses multifrequency to excite the coil. For each frequency, reconstructing defects from magnetic flux density (MFD) measurements is formulated as a linear inverse problem. The absence or presence of a defect strongly suggests that the solution to the linear inverse problem is binary. This study develops an algorithm under a statistical framework to solve the linear inverse problem with binary constraints. The algorithm introduces a Bernoulli prior over the hidden variables and uses a variational Bayesian inference (VBI) to analytically approximate the posterior probability of the hidden variables conditioned on the observed data. The effectiveness of the proposed method is demonstrated using numerically simulated data and a prototype consisting of a coil and an 8\times8 array of magnetic sensors with 4 mm intervals. The results demonstrate that the method is feasible for imaging defects of 2 mm with a depth resolution of 0.5 mm.
doi_str_mv 10.1109/JSEN.2024.3381623
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10487644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10487644</ieee_id><sourcerecordid>3049492371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-e2f2bbe6c93b668f17792b7b7bdb066b4b8049a96611c0e16ab9c75197fcfd683</originalsourceid><addsrcrecordid>eNpNkE9PAjEQxRujiYh-ABMPTTwv9t-22yNBVAzoAU28NW2Z4hLYxbYc-PbuBg9mDm8O7828_BC6pWREKdEPr8vp24gRJkacV1QyfoYGtCyrgipRnfc7J4Xg6usSXaW0IYRqVaoBmi73NibAC7tuINcej2O0RxzaiPM34NnOrutmjduAHyGAzwnXDV4ctrne2iNEvIBst-kaXYRO4OZPh-jzafoxeSnm78-zyXheeCZkLoAF5hxIr7mTsgpUKc2c6mbliJROuIoIbbWUlHoCVFqnvSq7qsGHlaz4EN2f7u5j-3OAlM2mPcSme2l4lxSacUU7Fz25fGxTihDMPtY7G4-GEtPTMj0t09Myf7S6zN0pUwPAP7-olBSC_wLSPmUz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049492371</pqid></control><display><type>article</type><title>Sparse Magnetic Array for the Imaging of Defects in Multilayer Metals</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Wei-Chen ; Lin, Chun-Yeon</creator><creatorcontrib>Li, Wei-Chen ; Lin, Chun-Yeon</creatorcontrib><description>This study presents a novel eddy current sensing method for imaging defect distribution in multilayered nonferrous metal plates using an array of magnetic sensors. This method involves dividing the metal plate into small voxels to facilitate reconstruction and uses multifrequency to excite the coil. For each frequency, reconstructing defects from magnetic flux density (MFD) measurements is formulated as a linear inverse problem. The absence or presence of a defect strongly suggests that the solution to the linear inverse problem is binary. This study develops an algorithm under a statistical framework to solve the linear inverse problem with binary constraints. The algorithm introduces a Bernoulli prior over the hidden variables and uses a variational Bayesian inference (VBI) to analytically approximate the posterior probability of the hidden variables conditioned on the observed data. The effectiveness of the proposed method is demonstrated using numerically simulated data and a prototype consisting of a coil and an &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;8\times8 &lt;/tex-math&gt;&lt;/inline-formula&gt; array of magnetic sensors with 4 mm intervals. The results demonstrate that the method is feasible for imaging defects of 2 mm with a depth resolution of 0.5 mm.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3381623</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bayesian analysis ; Bernoulli Bayesian learning (BBL) ; Coils ; Conditional probability ; defect imaging ; Defects ; eddy current testing (ECT) ; Eddy currents ; Flux density ; Image reconstruction ; Imaging ; Inverse problems ; Magnetic flux ; Magnetic sensors ; Metal plates ; Metals ; Multilayers ; Nonferrous metals ; Sensor arrays ; Sensors ; Statistical analysis ; Statistical inference</subject><ispartof>IEEE sensors journal, 2024-05, Vol.24 (9), p.14082-14092</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-e2f2bbe6c93b668f17792b7b7bdb066b4b8049a96611c0e16ab9c75197fcfd683</cites><orcidid>0009-0005-9899-3753 ; 0000-0003-4585-5881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10487644$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10487644$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Wei-Chen</creatorcontrib><creatorcontrib>Lin, Chun-Yeon</creatorcontrib><title>Sparse Magnetic Array for the Imaging of Defects in Multilayer Metals</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This study presents a novel eddy current sensing method for imaging defect distribution in multilayered nonferrous metal plates using an array of magnetic sensors. This method involves dividing the metal plate into small voxels to facilitate reconstruction and uses multifrequency to excite the coil. For each frequency, reconstructing defects from magnetic flux density (MFD) measurements is formulated as a linear inverse problem. The absence or presence of a defect strongly suggests that the solution to the linear inverse problem is binary. This study develops an algorithm under a statistical framework to solve the linear inverse problem with binary constraints. The algorithm introduces a Bernoulli prior over the hidden variables and uses a variational Bayesian inference (VBI) to analytically approximate the posterior probability of the hidden variables conditioned on the observed data. The effectiveness of the proposed method is demonstrated using numerically simulated data and a prototype consisting of a coil and an &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;8\times8 &lt;/tex-math&gt;&lt;/inline-formula&gt; array of magnetic sensors with 4 mm intervals. The results demonstrate that the method is feasible for imaging defects of 2 mm with a depth resolution of 0.5 mm.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Bernoulli Bayesian learning (BBL)</subject><subject>Coils</subject><subject>Conditional probability</subject><subject>defect imaging</subject><subject>Defects</subject><subject>eddy current testing (ECT)</subject><subject>Eddy currents</subject><subject>Flux density</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Inverse problems</subject><subject>Magnetic flux</subject><subject>Magnetic sensors</subject><subject>Metal plates</subject><subject>Metals</subject><subject>Multilayers</subject><subject>Nonferrous metals</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9PAjEQxRujiYh-ABMPTTwv9t-22yNBVAzoAU28NW2Z4hLYxbYc-PbuBg9mDm8O7828_BC6pWREKdEPr8vp24gRJkacV1QyfoYGtCyrgipRnfc7J4Xg6usSXaW0IYRqVaoBmi73NibAC7tuINcej2O0RxzaiPM34NnOrutmjduAHyGAzwnXDV4ctrne2iNEvIBst-kaXYRO4OZPh-jzafoxeSnm78-zyXheeCZkLoAF5hxIr7mTsgpUKc2c6mbliJROuIoIbbWUlHoCVFqnvSq7qsGHlaz4EN2f7u5j-3OAlM2mPcSme2l4lxSacUU7Fz25fGxTihDMPtY7G4-GEtPTMj0t09Myf7S6zN0pUwPAP7-olBSC_wLSPmUz</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Li, Wei-Chen</creator><creator>Lin, Chun-Yeon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0005-9899-3753</orcidid><orcidid>https://orcid.org/0000-0003-4585-5881</orcidid></search><sort><creationdate>20240501</creationdate><title>Sparse Magnetic Array for the Imaging of Defects in Multilayer Metals</title><author>Li, Wei-Chen ; Lin, Chun-Yeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-e2f2bbe6c93b668f17792b7b7bdb066b4b8049a96611c0e16ab9c75197fcfd683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Bernoulli Bayesian learning (BBL)</topic><topic>Coils</topic><topic>Conditional probability</topic><topic>defect imaging</topic><topic>Defects</topic><topic>eddy current testing (ECT)</topic><topic>Eddy currents</topic><topic>Flux density</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Inverse problems</topic><topic>Magnetic flux</topic><topic>Magnetic sensors</topic><topic>Metal plates</topic><topic>Metals</topic><topic>Multilayers</topic><topic>Nonferrous metals</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wei-Chen</creatorcontrib><creatorcontrib>Lin, Chun-Yeon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Wei-Chen</au><au>Lin, Chun-Yeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse Magnetic Array for the Imaging of Defects in Multilayer Metals</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>24</volume><issue>9</issue><spage>14082</spage><epage>14092</epage><pages>14082-14092</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This study presents a novel eddy current sensing method for imaging defect distribution in multilayered nonferrous metal plates using an array of magnetic sensors. This method involves dividing the metal plate into small voxels to facilitate reconstruction and uses multifrequency to excite the coil. For each frequency, reconstructing defects from magnetic flux density (MFD) measurements is formulated as a linear inverse problem. The absence or presence of a defect strongly suggests that the solution to the linear inverse problem is binary. This study develops an algorithm under a statistical framework to solve the linear inverse problem with binary constraints. The algorithm introduces a Bernoulli prior over the hidden variables and uses a variational Bayesian inference (VBI) to analytically approximate the posterior probability of the hidden variables conditioned on the observed data. The effectiveness of the proposed method is demonstrated using numerically simulated data and a prototype consisting of a coil and an &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;8\times8 &lt;/tex-math&gt;&lt;/inline-formula&gt; array of magnetic sensors with 4 mm intervals. The results demonstrate that the method is feasible for imaging defects of 2 mm with a depth resolution of 0.5 mm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3381623</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0005-9899-3753</orcidid><orcidid>https://orcid.org/0000-0003-4585-5881</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-05, Vol.24 (9), p.14082-14092
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_10487644
source IEEE Electronic Library (IEL)
subjects Algorithms
Bayesian analysis
Bernoulli Bayesian learning (BBL)
Coils
Conditional probability
defect imaging
Defects
eddy current testing (ECT)
Eddy currents
Flux density
Image reconstruction
Imaging
Inverse problems
Magnetic flux
Magnetic sensors
Metal plates
Metals
Multilayers
Nonferrous metals
Sensor arrays
Sensors
Statistical analysis
Statistical inference
title Sparse Magnetic Array for the Imaging of Defects in Multilayer Metals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20Magnetic%20Array%20for%20the%20Imaging%20of%20Defects%20in%20Multilayer%20Metals&rft.jtitle=IEEE%20sensors%20journal&rft.au=Li,%20Wei-Chen&rft.date=2024-05-01&rft.volume=24&rft.issue=9&rft.spage=14082&rft.epage=14092&rft.pages=14082-14092&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3381623&rft_dat=%3Cproquest_RIE%3E3049492371%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049492371&rft_id=info:pmid/&rft_ieee_id=10487644&rfr_iscdi=true