Cardinality of Fuzzy Sets and Accumulation of Small Membership

We describe an intuitive and practically significant empirical phenomenon that relates to the concept of cardinality of a fuzzy set, namely, an excessive accumulation of small degrees of membership. We argue and demonstrate by examples that the present notions of cardinality do not take this phenome...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2024-06, Vol.32 (6), p.3779-3789
Hauptverfasser: Bartl, Eduard, Belohlavek, Radim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3789
container_issue 6
container_start_page 3779
container_title IEEE transactions on fuzzy systems
container_volume 32
creator Bartl, Eduard
Belohlavek, Radim
description We describe an intuitive and practically significant empirical phenomenon that relates to the concept of cardinality of a fuzzy set, namely, an excessive accumulation of small degrees of membership. We argue and demonstrate by examples that the present notions of cardinality do not take this phenomenon into account properly and may thus prove insufficient in applications. We propose a new concept of cardinality, generalizing the well-known Zadeh's sigma count, demonstrate using both intuitive and technical examples that it alleviates the insufficiency of the existing ones, and provide a theoretical analysis of this concept. We also propose topics for future theoretical and empirical research.
doi_str_mv 10.1109/TFUZZ.2024.3383279
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10485446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10485446</ieee_id><sourcerecordid>3064715848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-6b3f50e497323c92573cb2acc7f791bb388fa8e63c1630003bc8056c1313ad5f3</originalsourceid><addsrcrecordid>eNpNkLFOwzAQhi0EEqXwAoghEnPK2efYzoJUVRSQihjaLl0sx7VFqqQpdjK0T9-UdmC6k-7_Tr8-Qh4pjCiF_GUxXa5WIwaMjxAVMplfkQHNOU0BkF_3OwhMhQRxS-5i3ABQnlE1IK8TE9bl1lRlu08an0y7w2GfzF0bE7NdJ2Nru7qrTFs229N5XpuqSr5cXbgQf8rdPbnxporu4TKHZDl9W0w-0tn3--dkPEst47JNRYE-A8dziQxtzjKJtmDGWullTosClfJGOYGWCoS-cmEVZMJSpGjWmccheT7_3YXmt3Ox1ZumC33tqBEElzRTXPUpdk7Z0MQYnNe7UNYm7DUFffKk_zzpkyd98dRDT2eodM79A7jKOBd4BG0ZYyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064715848</pqid></control><display><type>article</type><title>Cardinality of Fuzzy Sets and Accumulation of Small Membership</title><source>IEEE Electronic Library (IEL)</source><creator>Bartl, Eduard ; Belohlavek, Radim</creator><creatorcontrib>Bartl, Eduard ; Belohlavek, Radim</creatorcontrib><description>We describe an intuitive and practically significant empirical phenomenon that relates to the concept of cardinality of a fuzzy set, namely, an excessive accumulation of small degrees of membership. We argue and demonstrate by examples that the present notions of cardinality do not take this phenomenon into account properly and may thus prove insufficient in applications. We propose a new concept of cardinality, generalizing the well-known Zadeh's sigma count, demonstrate using both intuitive and technical examples that it alleviates the insufficiency of the existing ones, and provide a theoretical analysis of this concept. We also propose topics for future theoretical and empirical research.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2024.3383279</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accumulation ; Cardinality ; fuzzy set ; Fuzzy sets ; Motion pictures ; Pipelines ; sigma count ; Social factors ; Statistics</subject><ispartof>IEEE transactions on fuzzy systems, 2024-06, Vol.32 (6), p.3779-3789</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-6b3f50e497323c92573cb2acc7f791bb388fa8e63c1630003bc8056c1313ad5f3</cites><orcidid>0000-0002-1273-0268 ; 0000-0003-4924-3233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10485446$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10485446$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bartl, Eduard</creatorcontrib><creatorcontrib>Belohlavek, Radim</creatorcontrib><title>Cardinality of Fuzzy Sets and Accumulation of Small Membership</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>We describe an intuitive and practically significant empirical phenomenon that relates to the concept of cardinality of a fuzzy set, namely, an excessive accumulation of small degrees of membership. We argue and demonstrate by examples that the present notions of cardinality do not take this phenomenon into account properly and may thus prove insufficient in applications. We propose a new concept of cardinality, generalizing the well-known Zadeh's sigma count, demonstrate using both intuitive and technical examples that it alleviates the insufficiency of the existing ones, and provide a theoretical analysis of this concept. We also propose topics for future theoretical and empirical research.</description><subject>Accumulation</subject><subject>Cardinality</subject><subject>fuzzy set</subject><subject>Fuzzy sets</subject><subject>Motion pictures</subject><subject>Pipelines</subject><subject>sigma count</subject><subject>Social factors</subject><subject>Statistics</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkLFOwzAQhi0EEqXwAoghEnPK2efYzoJUVRSQihjaLl0sx7VFqqQpdjK0T9-UdmC6k-7_Tr8-Qh4pjCiF_GUxXa5WIwaMjxAVMplfkQHNOU0BkF_3OwhMhQRxS-5i3ABQnlE1IK8TE9bl1lRlu08an0y7w2GfzF0bE7NdJ2Nru7qrTFs229N5XpuqSr5cXbgQf8rdPbnxporu4TKHZDl9W0w-0tn3--dkPEst47JNRYE-A8dziQxtzjKJtmDGWullTosClfJGOYGWCoS-cmEVZMJSpGjWmccheT7_3YXmt3Ox1ZumC33tqBEElzRTXPUpdk7Z0MQYnNe7UNYm7DUFffKk_zzpkyd98dRDT2eodM79A7jKOBd4BG0ZYyo</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Bartl, Eduard</creator><creator>Belohlavek, Radim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1273-0268</orcidid><orcidid>https://orcid.org/0000-0003-4924-3233</orcidid></search><sort><creationdate>20240601</creationdate><title>Cardinality of Fuzzy Sets and Accumulation of Small Membership</title><author>Bartl, Eduard ; Belohlavek, Radim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-6b3f50e497323c92573cb2acc7f791bb388fa8e63c1630003bc8056c1313ad5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accumulation</topic><topic>Cardinality</topic><topic>fuzzy set</topic><topic>Fuzzy sets</topic><topic>Motion pictures</topic><topic>Pipelines</topic><topic>sigma count</topic><topic>Social factors</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bartl, Eduard</creatorcontrib><creatorcontrib>Belohlavek, Radim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bartl, Eduard</au><au>Belohlavek, Radim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cardinality of Fuzzy Sets and Accumulation of Small Membership</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>32</volume><issue>6</issue><spage>3779</spage><epage>3789</epage><pages>3779-3789</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>We describe an intuitive and practically significant empirical phenomenon that relates to the concept of cardinality of a fuzzy set, namely, an excessive accumulation of small degrees of membership. We argue and demonstrate by examples that the present notions of cardinality do not take this phenomenon into account properly and may thus prove insufficient in applications. We propose a new concept of cardinality, generalizing the well-known Zadeh's sigma count, demonstrate using both intuitive and technical examples that it alleviates the insufficiency of the existing ones, and provide a theoretical analysis of this concept. We also propose topics for future theoretical and empirical research.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2024.3383279</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1273-0268</orcidid><orcidid>https://orcid.org/0000-0003-4924-3233</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2024-06, Vol.32 (6), p.3779-3789
issn 1063-6706
1941-0034
language eng
recordid cdi_ieee_primary_10485446
source IEEE Electronic Library (IEL)
subjects Accumulation
Cardinality
fuzzy set
Fuzzy sets
Motion pictures
Pipelines
sigma count
Social factors
Statistics
title Cardinality of Fuzzy Sets and Accumulation of Small Membership
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cardinality%20of%20Fuzzy%20Sets%20and%20Accumulation%20of%20Small%20Membership&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Bartl,%20Eduard&rft.date=2024-06-01&rft.volume=32&rft.issue=6&rft.spage=3779&rft.epage=3789&rft.pages=3779-3789&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2024.3383279&rft_dat=%3Cproquest_RIE%3E3064715848%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064715848&rft_id=info:pmid/&rft_ieee_id=10485446&rfr_iscdi=true