Cardinality of Fuzzy Sets and Accumulation of Small Membership
We describe an intuitive and practically significant empirical phenomenon that relates to the concept of cardinality of a fuzzy set, namely, an excessive accumulation of small degrees of membership. We argue and demonstrate by examples that the present notions of cardinality do not take this phenome...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on fuzzy systems 2024-06, Vol.32 (6), p.3779-3789 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3789 |
---|---|
container_issue | 6 |
container_start_page | 3779 |
container_title | IEEE transactions on fuzzy systems |
container_volume | 32 |
creator | Bartl, Eduard Belohlavek, Radim |
description | We describe an intuitive and practically significant empirical phenomenon that relates to the concept of cardinality of a fuzzy set, namely, an excessive accumulation of small degrees of membership. We argue and demonstrate by examples that the present notions of cardinality do not take this phenomenon into account properly and may thus prove insufficient in applications. We propose a new concept of cardinality, generalizing the well-known Zadeh's sigma count, demonstrate using both intuitive and technical examples that it alleviates the insufficiency of the existing ones, and provide a theoretical analysis of this concept. We also propose topics for future theoretical and empirical research. |
doi_str_mv | 10.1109/TFUZZ.2024.3383279 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10485446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10485446</ieee_id><sourcerecordid>3064715848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-6b3f50e497323c92573cb2acc7f791bb388fa8e63c1630003bc8056c1313ad5f3</originalsourceid><addsrcrecordid>eNpNkLFOwzAQhi0EEqXwAoghEnPK2efYzoJUVRSQihjaLl0sx7VFqqQpdjK0T9-UdmC6k-7_Tr8-Qh4pjCiF_GUxXa5WIwaMjxAVMplfkQHNOU0BkF_3OwhMhQRxS-5i3ABQnlE1IK8TE9bl1lRlu08an0y7w2GfzF0bE7NdJ2Nru7qrTFs229N5XpuqSr5cXbgQf8rdPbnxporu4TKHZDl9W0w-0tn3--dkPEst47JNRYE-A8dziQxtzjKJtmDGWullTosClfJGOYGWCoS-cmEVZMJSpGjWmccheT7_3YXmt3Ox1ZumC33tqBEElzRTXPUpdk7Z0MQYnNe7UNYm7DUFffKk_zzpkyd98dRDT2eodM79A7jKOBd4BG0ZYyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064715848</pqid></control><display><type>article</type><title>Cardinality of Fuzzy Sets and Accumulation of Small Membership</title><source>IEEE Electronic Library (IEL)</source><creator>Bartl, Eduard ; Belohlavek, Radim</creator><creatorcontrib>Bartl, Eduard ; Belohlavek, Radim</creatorcontrib><description>We describe an intuitive and practically significant empirical phenomenon that relates to the concept of cardinality of a fuzzy set, namely, an excessive accumulation of small degrees of membership. We argue and demonstrate by examples that the present notions of cardinality do not take this phenomenon into account properly and may thus prove insufficient in applications. We propose a new concept of cardinality, generalizing the well-known Zadeh's sigma count, demonstrate using both intuitive and technical examples that it alleviates the insufficiency of the existing ones, and provide a theoretical analysis of this concept. We also propose topics for future theoretical and empirical research.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2024.3383279</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accumulation ; Cardinality ; fuzzy set ; Fuzzy sets ; Motion pictures ; Pipelines ; sigma count ; Social factors ; Statistics</subject><ispartof>IEEE transactions on fuzzy systems, 2024-06, Vol.32 (6), p.3779-3789</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-6b3f50e497323c92573cb2acc7f791bb388fa8e63c1630003bc8056c1313ad5f3</cites><orcidid>0000-0002-1273-0268 ; 0000-0003-4924-3233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10485446$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10485446$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bartl, Eduard</creatorcontrib><creatorcontrib>Belohlavek, Radim</creatorcontrib><title>Cardinality of Fuzzy Sets and Accumulation of Small Membership</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>We describe an intuitive and practically significant empirical phenomenon that relates to the concept of cardinality of a fuzzy set, namely, an excessive accumulation of small degrees of membership. We argue and demonstrate by examples that the present notions of cardinality do not take this phenomenon into account properly and may thus prove insufficient in applications. We propose a new concept of cardinality, generalizing the well-known Zadeh's sigma count, demonstrate using both intuitive and technical examples that it alleviates the insufficiency of the existing ones, and provide a theoretical analysis of this concept. We also propose topics for future theoretical and empirical research.</description><subject>Accumulation</subject><subject>Cardinality</subject><subject>fuzzy set</subject><subject>Fuzzy sets</subject><subject>Motion pictures</subject><subject>Pipelines</subject><subject>sigma count</subject><subject>Social factors</subject><subject>Statistics</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkLFOwzAQhi0EEqXwAoghEnPK2efYzoJUVRSQihjaLl0sx7VFqqQpdjK0T9-UdmC6k-7_Tr8-Qh4pjCiF_GUxXa5WIwaMjxAVMplfkQHNOU0BkF_3OwhMhQRxS-5i3ABQnlE1IK8TE9bl1lRlu08an0y7w2GfzF0bE7NdJ2Nru7qrTFs229N5XpuqSr5cXbgQf8rdPbnxporu4TKHZDl9W0w-0tn3--dkPEst47JNRYE-A8dziQxtzjKJtmDGWullTosClfJGOYGWCoS-cmEVZMJSpGjWmccheT7_3YXmt3Ox1ZumC33tqBEElzRTXPUpdk7Z0MQYnNe7UNYm7DUFffKk_zzpkyd98dRDT2eodM79A7jKOBd4BG0ZYyo</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Bartl, Eduard</creator><creator>Belohlavek, Radim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1273-0268</orcidid><orcidid>https://orcid.org/0000-0003-4924-3233</orcidid></search><sort><creationdate>20240601</creationdate><title>Cardinality of Fuzzy Sets and Accumulation of Small Membership</title><author>Bartl, Eduard ; Belohlavek, Radim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-6b3f50e497323c92573cb2acc7f791bb388fa8e63c1630003bc8056c1313ad5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accumulation</topic><topic>Cardinality</topic><topic>fuzzy set</topic><topic>Fuzzy sets</topic><topic>Motion pictures</topic><topic>Pipelines</topic><topic>sigma count</topic><topic>Social factors</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bartl, Eduard</creatorcontrib><creatorcontrib>Belohlavek, Radim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bartl, Eduard</au><au>Belohlavek, Radim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cardinality of Fuzzy Sets and Accumulation of Small Membership</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>32</volume><issue>6</issue><spage>3779</spage><epage>3789</epage><pages>3779-3789</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>We describe an intuitive and practically significant empirical phenomenon that relates to the concept of cardinality of a fuzzy set, namely, an excessive accumulation of small degrees of membership. We argue and demonstrate by examples that the present notions of cardinality do not take this phenomenon into account properly and may thus prove insufficient in applications. We propose a new concept of cardinality, generalizing the well-known Zadeh's sigma count, demonstrate using both intuitive and technical examples that it alleviates the insufficiency of the existing ones, and provide a theoretical analysis of this concept. We also propose topics for future theoretical and empirical research.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2024.3383279</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1273-0268</orcidid><orcidid>https://orcid.org/0000-0003-4924-3233</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6706 |
ispartof | IEEE transactions on fuzzy systems, 2024-06, Vol.32 (6), p.3779-3789 |
issn | 1063-6706 1941-0034 |
language | eng |
recordid | cdi_ieee_primary_10485446 |
source | IEEE Electronic Library (IEL) |
subjects | Accumulation Cardinality fuzzy set Fuzzy sets Motion pictures Pipelines sigma count Social factors Statistics |
title | Cardinality of Fuzzy Sets and Accumulation of Small Membership |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cardinality%20of%20Fuzzy%20Sets%20and%20Accumulation%20of%20Small%20Membership&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Bartl,%20Eduard&rft.date=2024-06-01&rft.volume=32&rft.issue=6&rft.spage=3779&rft.epage=3789&rft.pages=3779-3789&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2024.3383279&rft_dat=%3Cproquest_RIE%3E3064715848%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064715848&rft_id=info:pmid/&rft_ieee_id=10485446&rfr_iscdi=true |