A General Scenario-Agnostic Reinforcement Learning for Traffic Signal Control
Reinforcement learning (RL) can automatically learn a better policy through a trial-and-error paradigm and has been adopted to revolutionize and optimize traditional traffic signal control systems that are usually based on handcrafted methods. However, most existing RL-based models are either based...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2024-09, Vol.25 (9), p.11330-11344 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!