A General Scenario-Agnostic Reinforcement Learning for Traffic Signal Control

Reinforcement learning (RL) can automatically learn a better policy through a trial-and-error paradigm and has been adopted to revolutionize and optimize traditional traffic signal control systems that are usually based on handcrafted methods. However, most existing RL-based models are either based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2024-09, Vol.25 (9), p.11330-11344
Hauptverfasser: Jiang, Haoyuan, Li, Ziyue, Li, Zhishuai, Bai, Lei, Mao, Hangyu, Ketter, Wolfgang, Zhao, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!