Influence of Noise in Entanglement-Based Quantum Networks

We consider entanglement-based quantum networks, where multipartite entangled resource states are distributed and stored among the nodes and locally manipulated upon request to establish the desired target configuration. Separating the generation process from the requests enables a pre-preparation o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2024-07, Vol.42 (7), p.1793-1807
Hauptverfasser: Mor-Ruiz, Maria Flors, Dur, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1807
container_issue 7
container_start_page 1793
container_title IEEE journal on selected areas in communications
container_volume 42
creator Mor-Ruiz, Maria Flors
Dur, Wolfgang
description We consider entanglement-based quantum networks, where multipartite entangled resource states are distributed and stored among the nodes and locally manipulated upon request to establish the desired target configuration. Separating the generation process from the requests enables a pre-preparation of resources, hence a reduced network latency. It also allows for an optimization of the entanglement topology, which is independent of the underlying network geometry. We concentrate on establishing Bell pairs or tripartite GHZ states between arbitrary parties. We study the influence of noise in this process, where we consider imperfections in state preparation, memories, and measurements - all of which can be modeled by local depolarizing noise. We compare different resource states corresponding to linear chains, trees, or multi-dimensional rectangular clusters, as well as centralized topologies using bipartite or tripartite entangled states. We compute the fidelity of the target states using a recently established efficient method, the noisy stabilizer formalism, and identify the best resource states within these classes. This allows us to treat networks of large size containing millions of nodes. We find that in large networks, high-dimensional cluster states are favorable and lead to a significantly higher target state fidelity.
doi_str_mv 10.1109/JSAC.2024.3380089
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10479180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10479180</ieee_id><sourcerecordid>3069620710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-90fd9ba5a3155221da02b28d3aa6c6054857afe2e3797662da21afa2c1f85f533</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOAh4Dlxdjf7daylaqVURD0v22RWUttN3U0Q_70p7cHTMPC87wwPIdcUCkrB3D2_TaYFA1YWnGsAbU7IiAqhcxiWUzICxXmuFZXn5CKlNQAtS81GxMyD3_QYKsxany3bJmHWhGwWOhc-N7jF0OX3LmGdvfYudP02W2L308avdEnOvNskvDrOMfl4mL1Pn_LFy-N8OlnkFdOmyw342qyccHx4hzFaO2ArpmvunKwkiFIL5Twy5MooKVntGHXesYp6LbzgfExuD7272H73mDq7bvsYhpOWgzSSgaIwUPRAVbFNKaK3u9hsXfy1FOzekN0bsntD9mhoyNwcMg0i_uNLZagG_gdCJWCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069620710</pqid></control><display><type>article</type><title>Influence of Noise in Entanglement-Based Quantum Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Mor-Ruiz, Maria Flors ; Dur, Wolfgang</creator><creatorcontrib>Mor-Ruiz, Maria Flors ; Dur, Wolfgang</creatorcontrib><description>We consider entanglement-based quantum networks, where multipartite entangled resource states are distributed and stored among the nodes and locally manipulated upon request to establish the desired target configuration. Separating the generation process from the requests enables a pre-preparation of resources, hence a reduced network latency. It also allows for an optimization of the entanglement topology, which is independent of the underlying network geometry. We concentrate on establishing Bell pairs or tripartite GHZ states between arbitrary parties. We study the influence of noise in this process, where we consider imperfections in state preparation, memories, and measurements - all of which can be modeled by local depolarizing noise. We compare different resource states corresponding to linear chains, trees, or multi-dimensional rectangular clusters, as well as centralized topologies using bipartite or tripartite entangled states. We compute the fidelity of the target states using a recently established efficient method, the noisy stabilizer formalism, and identify the best resource states within these classes. This allows us to treat networks of large size containing millions of nodes. We find that in large networks, high-dimensional cluster states are favorable and lead to a significantly higher target state fidelity.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2024.3380089</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Entangled states ; Memory management ; Network latency ; Network topologies ; Network topology ; Nodes ; Noise measurement ; noisy quantum processes ; Quantum entanglement ; Quantum networks ; Qubit ; Switches ; Topology ; Topology optimization</subject><ispartof>IEEE journal on selected areas in communications, 2024-07, Vol.42 (7), p.1793-1807</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-90fd9ba5a3155221da02b28d3aa6c6054857afe2e3797662da21afa2c1f85f533</cites><orcidid>0000-0003-4921-5929 ; 0000-0002-0234-7425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10479180$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Mor-Ruiz, Maria Flors</creatorcontrib><creatorcontrib>Dur, Wolfgang</creatorcontrib><title>Influence of Noise in Entanglement-Based Quantum Networks</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>We consider entanglement-based quantum networks, where multipartite entangled resource states are distributed and stored among the nodes and locally manipulated upon request to establish the desired target configuration. Separating the generation process from the requests enables a pre-preparation of resources, hence a reduced network latency. It also allows for an optimization of the entanglement topology, which is independent of the underlying network geometry. We concentrate on establishing Bell pairs or tripartite GHZ states between arbitrary parties. We study the influence of noise in this process, where we consider imperfections in state preparation, memories, and measurements - all of which can be modeled by local depolarizing noise. We compare different resource states corresponding to linear chains, trees, or multi-dimensional rectangular clusters, as well as centralized topologies using bipartite or tripartite entangled states. We compute the fidelity of the target states using a recently established efficient method, the noisy stabilizer formalism, and identify the best resource states within these classes. This allows us to treat networks of large size containing millions of nodes. We find that in large networks, high-dimensional cluster states are favorable and lead to a significantly higher target state fidelity.</description><subject>Accuracy</subject><subject>Entangled states</subject><subject>Memory management</subject><subject>Network latency</subject><subject>Network topologies</subject><subject>Network topology</subject><subject>Nodes</subject><subject>Noise measurement</subject><subject>noisy quantum processes</subject><subject>Quantum entanglement</subject><subject>Quantum networks</subject><subject>Qubit</subject><subject>Switches</subject><subject>Topology</subject><subject>Topology optimization</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOAh4Dlxdjf7daylaqVURD0v22RWUttN3U0Q_70p7cHTMPC87wwPIdcUCkrB3D2_TaYFA1YWnGsAbU7IiAqhcxiWUzICxXmuFZXn5CKlNQAtS81GxMyD3_QYKsxany3bJmHWhGwWOhc-N7jF0OX3LmGdvfYudP02W2L308avdEnOvNskvDrOMfl4mL1Pn_LFy-N8OlnkFdOmyw342qyccHx4hzFaO2ArpmvunKwkiFIL5Twy5MooKVntGHXesYp6LbzgfExuD7272H73mDq7bvsYhpOWgzSSgaIwUPRAVbFNKaK3u9hsXfy1FOzekN0bsntD9mhoyNwcMg0i_uNLZagG_gdCJWCs</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Mor-Ruiz, Maria Flors</creator><creator>Dur, Wolfgang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4921-5929</orcidid><orcidid>https://orcid.org/0000-0002-0234-7425</orcidid></search><sort><creationdate>20240701</creationdate><title>Influence of Noise in Entanglement-Based Quantum Networks</title><author>Mor-Ruiz, Maria Flors ; Dur, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-90fd9ba5a3155221da02b28d3aa6c6054857afe2e3797662da21afa2c1f85f533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Entangled states</topic><topic>Memory management</topic><topic>Network latency</topic><topic>Network topologies</topic><topic>Network topology</topic><topic>Nodes</topic><topic>Noise measurement</topic><topic>noisy quantum processes</topic><topic>Quantum entanglement</topic><topic>Quantum networks</topic><topic>Qubit</topic><topic>Switches</topic><topic>Topology</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mor-Ruiz, Maria Flors</creatorcontrib><creatorcontrib>Dur, Wolfgang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mor-Ruiz, Maria Flors</au><au>Dur, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Noise in Entanglement-Based Quantum Networks</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>42</volume><issue>7</issue><spage>1793</spage><epage>1807</epage><pages>1793-1807</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>We consider entanglement-based quantum networks, where multipartite entangled resource states are distributed and stored among the nodes and locally manipulated upon request to establish the desired target configuration. Separating the generation process from the requests enables a pre-preparation of resources, hence a reduced network latency. It also allows for an optimization of the entanglement topology, which is independent of the underlying network geometry. We concentrate on establishing Bell pairs or tripartite GHZ states between arbitrary parties. We study the influence of noise in this process, where we consider imperfections in state preparation, memories, and measurements - all of which can be modeled by local depolarizing noise. We compare different resource states corresponding to linear chains, trees, or multi-dimensional rectangular clusters, as well as centralized topologies using bipartite or tripartite entangled states. We compute the fidelity of the target states using a recently established efficient method, the noisy stabilizer formalism, and identify the best resource states within these classes. This allows us to treat networks of large size containing millions of nodes. We find that in large networks, high-dimensional cluster states are favorable and lead to a significantly higher target state fidelity.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2024.3380089</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4921-5929</orcidid><orcidid>https://orcid.org/0000-0002-0234-7425</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0733-8716
ispartof IEEE journal on selected areas in communications, 2024-07, Vol.42 (7), p.1793-1807
issn 0733-8716
1558-0008
language eng
recordid cdi_ieee_primary_10479180
source IEEE Electronic Library (IEL)
subjects Accuracy
Entangled states
Memory management
Network latency
Network topologies
Network topology
Nodes
Noise measurement
noisy quantum processes
Quantum entanglement
Quantum networks
Qubit
Switches
Topology
Topology optimization
title Influence of Noise in Entanglement-Based Quantum Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Noise%20in%20Entanglement-Based%20Quantum%20Networks&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Mor-Ruiz,%20Maria%20Flors&rft.date=2024-07-01&rft.volume=42&rft.issue=7&rft.spage=1793&rft.epage=1807&rft.pages=1793-1807&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2024.3380089&rft_dat=%3Cproquest_ieee_%3E3069620710%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069620710&rft_id=info:pmid/&rft_ieee_id=10479180&rfr_iscdi=true