Influence of Noise in Entanglement-Based Quantum Networks
We consider entanglement-based quantum networks, where multipartite entangled resource states are distributed and stored among the nodes and locally manipulated upon request to establish the desired target configuration. Separating the generation process from the requests enables a pre-preparation o...
Gespeichert in:
Veröffentlicht in: | IEEE journal on selected areas in communications 2024-07, Vol.42 (7), p.1793-1807 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1807 |
---|---|
container_issue | 7 |
container_start_page | 1793 |
container_title | IEEE journal on selected areas in communications |
container_volume | 42 |
creator | Mor-Ruiz, Maria Flors Dur, Wolfgang |
description | We consider entanglement-based quantum networks, where multipartite entangled resource states are distributed and stored among the nodes and locally manipulated upon request to establish the desired target configuration. Separating the generation process from the requests enables a pre-preparation of resources, hence a reduced network latency. It also allows for an optimization of the entanglement topology, which is independent of the underlying network geometry. We concentrate on establishing Bell pairs or tripartite GHZ states between arbitrary parties. We study the influence of noise in this process, where we consider imperfections in state preparation, memories, and measurements - all of which can be modeled by local depolarizing noise. We compare different resource states corresponding to linear chains, trees, or multi-dimensional rectangular clusters, as well as centralized topologies using bipartite or tripartite entangled states. We compute the fidelity of the target states using a recently established efficient method, the noisy stabilizer formalism, and identify the best resource states within these classes. This allows us to treat networks of large size containing millions of nodes. We find that in large networks, high-dimensional cluster states are favorable and lead to a significantly higher target state fidelity. |
doi_str_mv | 10.1109/JSAC.2024.3380089 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10479180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10479180</ieee_id><sourcerecordid>3069620710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-90fd9ba5a3155221da02b28d3aa6c6054857afe2e3797662da21afa2c1f85f533</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOAh4Dlxdjf7daylaqVURD0v22RWUttN3U0Q_70p7cHTMPC87wwPIdcUCkrB3D2_TaYFA1YWnGsAbU7IiAqhcxiWUzICxXmuFZXn5CKlNQAtS81GxMyD3_QYKsxany3bJmHWhGwWOhc-N7jF0OX3LmGdvfYudP02W2L308avdEnOvNskvDrOMfl4mL1Pn_LFy-N8OlnkFdOmyw342qyccHx4hzFaO2ArpmvunKwkiFIL5Twy5MooKVntGHXesYp6LbzgfExuD7272H73mDq7bvsYhpOWgzSSgaIwUPRAVbFNKaK3u9hsXfy1FOzekN0bsntD9mhoyNwcMg0i_uNLZagG_gdCJWCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069620710</pqid></control><display><type>article</type><title>Influence of Noise in Entanglement-Based Quantum Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Mor-Ruiz, Maria Flors ; Dur, Wolfgang</creator><creatorcontrib>Mor-Ruiz, Maria Flors ; Dur, Wolfgang</creatorcontrib><description>We consider entanglement-based quantum networks, where multipartite entangled resource states are distributed and stored among the nodes and locally manipulated upon request to establish the desired target configuration. Separating the generation process from the requests enables a pre-preparation of resources, hence a reduced network latency. It also allows for an optimization of the entanglement topology, which is independent of the underlying network geometry. We concentrate on establishing Bell pairs or tripartite GHZ states between arbitrary parties. We study the influence of noise in this process, where we consider imperfections in state preparation, memories, and measurements - all of which can be modeled by local depolarizing noise. We compare different resource states corresponding to linear chains, trees, or multi-dimensional rectangular clusters, as well as centralized topologies using bipartite or tripartite entangled states. We compute the fidelity of the target states using a recently established efficient method, the noisy stabilizer formalism, and identify the best resource states within these classes. This allows us to treat networks of large size containing millions of nodes. We find that in large networks, high-dimensional cluster states are favorable and lead to a significantly higher target state fidelity.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2024.3380089</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Entangled states ; Memory management ; Network latency ; Network topologies ; Network topology ; Nodes ; Noise measurement ; noisy quantum processes ; Quantum entanglement ; Quantum networks ; Qubit ; Switches ; Topology ; Topology optimization</subject><ispartof>IEEE journal on selected areas in communications, 2024-07, Vol.42 (7), p.1793-1807</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-90fd9ba5a3155221da02b28d3aa6c6054857afe2e3797662da21afa2c1f85f533</cites><orcidid>0000-0003-4921-5929 ; 0000-0002-0234-7425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10479180$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Mor-Ruiz, Maria Flors</creatorcontrib><creatorcontrib>Dur, Wolfgang</creatorcontrib><title>Influence of Noise in Entanglement-Based Quantum Networks</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>We consider entanglement-based quantum networks, where multipartite entangled resource states are distributed and stored among the nodes and locally manipulated upon request to establish the desired target configuration. Separating the generation process from the requests enables a pre-preparation of resources, hence a reduced network latency. It also allows for an optimization of the entanglement topology, which is independent of the underlying network geometry. We concentrate on establishing Bell pairs or tripartite GHZ states between arbitrary parties. We study the influence of noise in this process, where we consider imperfections in state preparation, memories, and measurements - all of which can be modeled by local depolarizing noise. We compare different resource states corresponding to linear chains, trees, or multi-dimensional rectangular clusters, as well as centralized topologies using bipartite or tripartite entangled states. We compute the fidelity of the target states using a recently established efficient method, the noisy stabilizer formalism, and identify the best resource states within these classes. This allows us to treat networks of large size containing millions of nodes. We find that in large networks, high-dimensional cluster states are favorable and lead to a significantly higher target state fidelity.</description><subject>Accuracy</subject><subject>Entangled states</subject><subject>Memory management</subject><subject>Network latency</subject><subject>Network topologies</subject><subject>Network topology</subject><subject>Nodes</subject><subject>Noise measurement</subject><subject>noisy quantum processes</subject><subject>Quantum entanglement</subject><subject>Quantum networks</subject><subject>Qubit</subject><subject>Switches</subject><subject>Topology</subject><subject>Topology optimization</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOAh4Dlxdjf7daylaqVURD0v22RWUttN3U0Q_70p7cHTMPC87wwPIdcUCkrB3D2_TaYFA1YWnGsAbU7IiAqhcxiWUzICxXmuFZXn5CKlNQAtS81GxMyD3_QYKsxany3bJmHWhGwWOhc-N7jF0OX3LmGdvfYudP02W2L308avdEnOvNskvDrOMfl4mL1Pn_LFy-N8OlnkFdOmyw342qyccHx4hzFaO2ArpmvunKwkiFIL5Twy5MooKVntGHXesYp6LbzgfExuD7272H73mDq7bvsYhpOWgzSSgaIwUPRAVbFNKaK3u9hsXfy1FOzekN0bsntD9mhoyNwcMg0i_uNLZagG_gdCJWCs</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Mor-Ruiz, Maria Flors</creator><creator>Dur, Wolfgang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4921-5929</orcidid><orcidid>https://orcid.org/0000-0002-0234-7425</orcidid></search><sort><creationdate>20240701</creationdate><title>Influence of Noise in Entanglement-Based Quantum Networks</title><author>Mor-Ruiz, Maria Flors ; Dur, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-90fd9ba5a3155221da02b28d3aa6c6054857afe2e3797662da21afa2c1f85f533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Entangled states</topic><topic>Memory management</topic><topic>Network latency</topic><topic>Network topologies</topic><topic>Network topology</topic><topic>Nodes</topic><topic>Noise measurement</topic><topic>noisy quantum processes</topic><topic>Quantum entanglement</topic><topic>Quantum networks</topic><topic>Qubit</topic><topic>Switches</topic><topic>Topology</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mor-Ruiz, Maria Flors</creatorcontrib><creatorcontrib>Dur, Wolfgang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mor-Ruiz, Maria Flors</au><au>Dur, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Noise in Entanglement-Based Quantum Networks</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>42</volume><issue>7</issue><spage>1793</spage><epage>1807</epage><pages>1793-1807</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>We consider entanglement-based quantum networks, where multipartite entangled resource states are distributed and stored among the nodes and locally manipulated upon request to establish the desired target configuration. Separating the generation process from the requests enables a pre-preparation of resources, hence a reduced network latency. It also allows for an optimization of the entanglement topology, which is independent of the underlying network geometry. We concentrate on establishing Bell pairs or tripartite GHZ states between arbitrary parties. We study the influence of noise in this process, where we consider imperfections in state preparation, memories, and measurements - all of which can be modeled by local depolarizing noise. We compare different resource states corresponding to linear chains, trees, or multi-dimensional rectangular clusters, as well as centralized topologies using bipartite or tripartite entangled states. We compute the fidelity of the target states using a recently established efficient method, the noisy stabilizer formalism, and identify the best resource states within these classes. This allows us to treat networks of large size containing millions of nodes. We find that in large networks, high-dimensional cluster states are favorable and lead to a significantly higher target state fidelity.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2024.3380089</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4921-5929</orcidid><orcidid>https://orcid.org/0000-0002-0234-7425</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-8716 |
ispartof | IEEE journal on selected areas in communications, 2024-07, Vol.42 (7), p.1793-1807 |
issn | 0733-8716 1558-0008 |
language | eng |
recordid | cdi_ieee_primary_10479180 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Entangled states Memory management Network latency Network topologies Network topology Nodes Noise measurement noisy quantum processes Quantum entanglement Quantum networks Qubit Switches Topology Topology optimization |
title | Influence of Noise in Entanglement-Based Quantum Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Noise%20in%20Entanglement-Based%20Quantum%20Networks&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Mor-Ruiz,%20Maria%20Flors&rft.date=2024-07-01&rft.volume=42&rft.issue=7&rft.spage=1793&rft.epage=1807&rft.pages=1793-1807&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2024.3380089&rft_dat=%3Cproquest_ieee_%3E3069620710%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069620710&rft_id=info:pmid/&rft_ieee_id=10479180&rfr_iscdi=true |