Enhancing Fault Ride-Through Capacity of DFIG-Based WPs by Adaptive Backstepping Command Using Parametric Estimation in Non-Linear Forward Power Controller Design
The principal issue associated with wind parks (WPs) based on doubly-fed induction generators (DFIGs) is their vulnerability to network faults. This paper presents a novel nonlinear forward power controller design with an adaptive backstepping command using parametric estimation (NFPC_ABC-PE) to enh...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.58675-58689 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 58689 |
---|---|
container_issue | |
container_start_page | 58675 |
container_title | IEEE access |
container_volume | 12 |
creator | Loulijat, Azeddine Makhad, Mohamed Hilali, Abdelilah Chojaa, Hamid El Marghichi, Mouncef Hatatah, Mohammed Alghamdi, Thamer A. H. |
description | The principal issue associated with wind parks (WPs) based on doubly-fed induction generators (DFIGs) is their vulnerability to network faults. This paper presents a novel nonlinear forward power controller design with an adaptive backstepping command using parametric estimation (NFPC_ABC-PE) to enhance fault ride-through (FRT) capacities in WP utilizing DFIGs. The suggested NFPC_ABC-PE manupiles both rotor and network-side power converters (i.e., RSPCs and NSPCs). Specifically, RSPCs are manipulated to maintain the targeted voltage at dc-bus terminals, while NSPCs are manipulated to supply the reactive energy (power) necessary if the network is disturbed. As a result, the NFPC_ABC-PE proposed precisely supplies reactive energy to ensure the smooth execution of FRT ability. The method developed comprehends the dynamics of RSPC, NSPC-side filters, and dc-bus terminal voltage in the form of electrical active and reactive output power. The parameters of the RSPC and NSPC-side filters, including those associated with the dc-bus capacitor, are regarded as entirely unknown. To estimate and regulate these parameters, adaptation algorithms are utilized. The NFPC_ABC-PE employs parameter adaptation algorithms and switching control inputs designed to safeguard the overall stability of WP. The stability analysis of the DFIG-based WPs with the proposed NFPC_ABC-PE involves applying stability in the sense of the Lyapunov function (LF). To validate its efficacy, simulations are carried out on a single 10 MW power generation unit. The results of the simulation highlight a clear enhancement in the stability and FRT capability of WP, contrasting with the nonlinear forward power controller employing the sliding mode command (NFPC-SMC). |
doi_str_mv | 10.1109/ACCESS.2024.3381613 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10478889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10478889</ieee_id><doaj_id>oai_doaj_org_article_aeec6de627224554a9632ced9f3c2d8a</doaj_id><sourcerecordid>3050303999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-b77af2f479fcf4ea6dbc1411f593247b4ed0c69220b0bfc36257e42a5b4216233</originalsourceid><addsrcrecordid>eNpNUctu2zAQFIoWaJDkC9oDgZ7lUiQlmUdHsVMDRms0CXokVuTKpmuTKkkn8O_0SytHQZG97AMzs4udLPtU0ElRUPl11jTz-_sJo0xMOJ8WVcHfZResqGTOS169f1N_zK5j3NEhBpgs64vs79xtwWnrNmQBx30iP63B_GEb_HGzJQ30oG06Ed-R28XyLr-BiIb8WkfSnsjMQJ_sE5Ib0L9jwr4_yzT-cABnyGM8d2sIcMAUrCbzmOwBkvWOWEe-e5evrEMIZOHDMwRD1v4Zw8B3Kfj9fihvMdqNu8o-dLCPeP2aL7PHxfyh-Zavftwtm9kq17yUKW_rGjrWiVp2uhMIlWl1IYqiKyVnom4FGqoryRhtadtpXrGyRsGgbMXwH8b5ZbYcdY2HnerDcGw4KQ9WvQx82CgIyeo9KkDUlcGK1YyJshQgK840GtlxzcwUBq0vo1Yf_J8jxqR2_hjccL7itKSccinlgOIjSgcfY8Du_9aCqrO3avRWnb1Vr94OrM8jyyLiG4aop9Op5P8Agk-hUA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050303999</pqid></control><display><type>article</type><title>Enhancing Fault Ride-Through Capacity of DFIG-Based WPs by Adaptive Backstepping Command Using Parametric Estimation in Non-Linear Forward Power Controller Design</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Loulijat, Azeddine ; Makhad, Mohamed ; Hilali, Abdelilah ; Chojaa, Hamid ; El Marghichi, Mouncef ; Hatatah, Mohammed ; Alghamdi, Thamer A. H.</creator><creatorcontrib>Loulijat, Azeddine ; Makhad, Mohamed ; Hilali, Abdelilah ; Chojaa, Hamid ; El Marghichi, Mouncef ; Hatatah, Mohammed ; Alghamdi, Thamer A. H.</creatorcontrib><description>The principal issue associated with wind parks (WPs) based on doubly-fed induction generators (DFIGs) is their vulnerability to network faults. This paper presents a novel nonlinear forward power controller design with an adaptive backstepping command using parametric estimation (NFPC_ABC-PE) to enhance fault ride-through (FRT) capacities in WP utilizing DFIGs. The suggested NFPC_ABC-PE manupiles both rotor and network-side power converters (i.e., RSPCs and NSPCs). Specifically, RSPCs are manipulated to maintain the targeted voltage at dc-bus terminals, while NSPCs are manipulated to supply the reactive energy (power) necessary if the network is disturbed. As a result, the NFPC_ABC-PE proposed precisely supplies reactive energy to ensure the smooth execution of FRT ability. The method developed comprehends the dynamics of RSPC, NSPC-side filters, and dc-bus terminal voltage in the form of electrical active and reactive output power. The parameters of the RSPC and NSPC-side filters, including those associated with the dc-bus capacitor, are regarded as entirely unknown. To estimate and regulate these parameters, adaptation algorithms are utilized. The NFPC_ABC-PE employs parameter adaptation algorithms and switching control inputs designed to safeguard the overall stability of WP. The stability analysis of the DFIG-based WPs with the proposed NFPC_ABC-PE involves applying stability in the sense of the Lyapunov function (LF). To validate its efficacy, simulations are carried out on a single 10 MW power generation unit. The results of the simulation highlight a clear enhancement in the stability and FRT capability of WP, contrasting with the nonlinear forward power controller employing the sliding mode command (NFPC-SMC).</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3381613</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation ; Algorithms ; Backstepping ; Codes ; Control systems design ; Controllers ; Data buses ; DFIG ; Doubly fed induction generators ; Electric potential ; Filtering algorithms ; FRT ; Heuristic algorithms ; Induction generators ; Liapunov functions ; network code ; NFPC-SMC ; NFPC_ABC ; Nonlinear control ; Parameter estimation ; parametric estimation ; Power converters ; Power generation ; Power system stability ; Radio frequency ; Reactive power ; Rotors ; Sliding mode control ; Stability analysis ; Voltage ; Wind power ; Wind power generation ; WPs</subject><ispartof>IEEE access, 2024, Vol.12, p.58675-58689</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-b77af2f479fcf4ea6dbc1411f593247b4ed0c69220b0bfc36257e42a5b4216233</cites><orcidid>0000-0002-3212-8493 ; 0000-0002-0940-1471 ; 0000-0002-9931-6907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10478889$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Loulijat, Azeddine</creatorcontrib><creatorcontrib>Makhad, Mohamed</creatorcontrib><creatorcontrib>Hilali, Abdelilah</creatorcontrib><creatorcontrib>Chojaa, Hamid</creatorcontrib><creatorcontrib>El Marghichi, Mouncef</creatorcontrib><creatorcontrib>Hatatah, Mohammed</creatorcontrib><creatorcontrib>Alghamdi, Thamer A. H.</creatorcontrib><title>Enhancing Fault Ride-Through Capacity of DFIG-Based WPs by Adaptive Backstepping Command Using Parametric Estimation in Non-Linear Forward Power Controller Design</title><title>IEEE access</title><addtitle>Access</addtitle><description>The principal issue associated with wind parks (WPs) based on doubly-fed induction generators (DFIGs) is their vulnerability to network faults. This paper presents a novel nonlinear forward power controller design with an adaptive backstepping command using parametric estimation (NFPC_ABC-PE) to enhance fault ride-through (FRT) capacities in WP utilizing DFIGs. The suggested NFPC_ABC-PE manupiles both rotor and network-side power converters (i.e., RSPCs and NSPCs). Specifically, RSPCs are manipulated to maintain the targeted voltage at dc-bus terminals, while NSPCs are manipulated to supply the reactive energy (power) necessary if the network is disturbed. As a result, the NFPC_ABC-PE proposed precisely supplies reactive energy to ensure the smooth execution of FRT ability. The method developed comprehends the dynamics of RSPC, NSPC-side filters, and dc-bus terminal voltage in the form of electrical active and reactive output power. The parameters of the RSPC and NSPC-side filters, including those associated with the dc-bus capacitor, are regarded as entirely unknown. To estimate and regulate these parameters, adaptation algorithms are utilized. The NFPC_ABC-PE employs parameter adaptation algorithms and switching control inputs designed to safeguard the overall stability of WP. The stability analysis of the DFIG-based WPs with the proposed NFPC_ABC-PE involves applying stability in the sense of the Lyapunov function (LF). To validate its efficacy, simulations are carried out on a single 10 MW power generation unit. The results of the simulation highlight a clear enhancement in the stability and FRT capability of WP, contrasting with the nonlinear forward power controller employing the sliding mode command (NFPC-SMC).</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Backstepping</subject><subject>Codes</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Data buses</subject><subject>DFIG</subject><subject>Doubly fed induction generators</subject><subject>Electric potential</subject><subject>Filtering algorithms</subject><subject>FRT</subject><subject>Heuristic algorithms</subject><subject>Induction generators</subject><subject>Liapunov functions</subject><subject>network code</subject><subject>NFPC-SMC</subject><subject>NFPC_ABC</subject><subject>Nonlinear control</subject><subject>Parameter estimation</subject><subject>parametric estimation</subject><subject>Power converters</subject><subject>Power generation</subject><subject>Power system stability</subject><subject>Radio frequency</subject><subject>Reactive power</subject><subject>Rotors</subject><subject>Sliding mode control</subject><subject>Stability analysis</subject><subject>Voltage</subject><subject>Wind power</subject><subject>Wind power generation</subject><subject>WPs</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctu2zAQFIoWaJDkC9oDgZ7lUiQlmUdHsVMDRms0CXokVuTKpmuTKkkn8O_0SytHQZG97AMzs4udLPtU0ElRUPl11jTz-_sJo0xMOJ8WVcHfZResqGTOS169f1N_zK5j3NEhBpgs64vs79xtwWnrNmQBx30iP63B_GEb_HGzJQ30oG06Ed-R28XyLr-BiIb8WkfSnsjMQJ_sE5Ib0L9jwr4_yzT-cABnyGM8d2sIcMAUrCbzmOwBkvWOWEe-e5evrEMIZOHDMwRD1v4Zw8B3Kfj9fihvMdqNu8o-dLCPeP2aL7PHxfyh-Zavftwtm9kq17yUKW_rGjrWiVp2uhMIlWl1IYqiKyVnom4FGqoryRhtadtpXrGyRsGgbMXwH8b5ZbYcdY2HnerDcGw4KQ9WvQx82CgIyeo9KkDUlcGK1YyJshQgK840GtlxzcwUBq0vo1Yf_J8jxqR2_hjccL7itKSccinlgOIjSgcfY8Du_9aCqrO3avRWnb1Vr94OrM8jyyLiG4aop9Op5P8Agk-hUA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Loulijat, Azeddine</creator><creator>Makhad, Mohamed</creator><creator>Hilali, Abdelilah</creator><creator>Chojaa, Hamid</creator><creator>El Marghichi, Mouncef</creator><creator>Hatatah, Mohammed</creator><creator>Alghamdi, Thamer A. H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3212-8493</orcidid><orcidid>https://orcid.org/0000-0002-0940-1471</orcidid><orcidid>https://orcid.org/0000-0002-9931-6907</orcidid></search><sort><creationdate>2024</creationdate><title>Enhancing Fault Ride-Through Capacity of DFIG-Based WPs by Adaptive Backstepping Command Using Parametric Estimation in Non-Linear Forward Power Controller Design</title><author>Loulijat, Azeddine ; Makhad, Mohamed ; Hilali, Abdelilah ; Chojaa, Hamid ; El Marghichi, Mouncef ; Hatatah, Mohammed ; Alghamdi, Thamer A. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-b77af2f479fcf4ea6dbc1411f593247b4ed0c69220b0bfc36257e42a5b4216233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Backstepping</topic><topic>Codes</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Data buses</topic><topic>DFIG</topic><topic>Doubly fed induction generators</topic><topic>Electric potential</topic><topic>Filtering algorithms</topic><topic>FRT</topic><topic>Heuristic algorithms</topic><topic>Induction generators</topic><topic>Liapunov functions</topic><topic>network code</topic><topic>NFPC-SMC</topic><topic>NFPC_ABC</topic><topic>Nonlinear control</topic><topic>Parameter estimation</topic><topic>parametric estimation</topic><topic>Power converters</topic><topic>Power generation</topic><topic>Power system stability</topic><topic>Radio frequency</topic><topic>Reactive power</topic><topic>Rotors</topic><topic>Sliding mode control</topic><topic>Stability analysis</topic><topic>Voltage</topic><topic>Wind power</topic><topic>Wind power generation</topic><topic>WPs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loulijat, Azeddine</creatorcontrib><creatorcontrib>Makhad, Mohamed</creatorcontrib><creatorcontrib>Hilali, Abdelilah</creatorcontrib><creatorcontrib>Chojaa, Hamid</creatorcontrib><creatorcontrib>El Marghichi, Mouncef</creatorcontrib><creatorcontrib>Hatatah, Mohammed</creatorcontrib><creatorcontrib>Alghamdi, Thamer A. H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loulijat, Azeddine</au><au>Makhad, Mohamed</au><au>Hilali, Abdelilah</au><au>Chojaa, Hamid</au><au>El Marghichi, Mouncef</au><au>Hatatah, Mohammed</au><au>Alghamdi, Thamer A. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Fault Ride-Through Capacity of DFIG-Based WPs by Adaptive Backstepping Command Using Parametric Estimation in Non-Linear Forward Power Controller Design</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>58675</spage><epage>58689</epage><pages>58675-58689</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The principal issue associated with wind parks (WPs) based on doubly-fed induction generators (DFIGs) is their vulnerability to network faults. This paper presents a novel nonlinear forward power controller design with an adaptive backstepping command using parametric estimation (NFPC_ABC-PE) to enhance fault ride-through (FRT) capacities in WP utilizing DFIGs. The suggested NFPC_ABC-PE manupiles both rotor and network-side power converters (i.e., RSPCs and NSPCs). Specifically, RSPCs are manipulated to maintain the targeted voltage at dc-bus terminals, while NSPCs are manipulated to supply the reactive energy (power) necessary if the network is disturbed. As a result, the NFPC_ABC-PE proposed precisely supplies reactive energy to ensure the smooth execution of FRT ability. The method developed comprehends the dynamics of RSPC, NSPC-side filters, and dc-bus terminal voltage in the form of electrical active and reactive output power. The parameters of the RSPC and NSPC-side filters, including those associated with the dc-bus capacitor, are regarded as entirely unknown. To estimate and regulate these parameters, adaptation algorithms are utilized. The NFPC_ABC-PE employs parameter adaptation algorithms and switching control inputs designed to safeguard the overall stability of WP. The stability analysis of the DFIG-based WPs with the proposed NFPC_ABC-PE involves applying stability in the sense of the Lyapunov function (LF). To validate its efficacy, simulations are carried out on a single 10 MW power generation unit. The results of the simulation highlight a clear enhancement in the stability and FRT capability of WP, contrasting with the nonlinear forward power controller employing the sliding mode command (NFPC-SMC).</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3381613</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3212-8493</orcidid><orcidid>https://orcid.org/0000-0002-0940-1471</orcidid><orcidid>https://orcid.org/0000-0002-9931-6907</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.58675-58689 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10478889 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adaptation Algorithms Backstepping Codes Control systems design Controllers Data buses DFIG Doubly fed induction generators Electric potential Filtering algorithms FRT Heuristic algorithms Induction generators Liapunov functions network code NFPC-SMC NFPC_ABC Nonlinear control Parameter estimation parametric estimation Power converters Power generation Power system stability Radio frequency Reactive power Rotors Sliding mode control Stability analysis Voltage Wind power Wind power generation WPs |
title | Enhancing Fault Ride-Through Capacity of DFIG-Based WPs by Adaptive Backstepping Command Using Parametric Estimation in Non-Linear Forward Power Controller Design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A34%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Fault%20Ride-Through%20Capacity%20of%20DFIG-Based%20WPs%20by%20Adaptive%20Backstepping%20Command%20Using%20Parametric%20Estimation%20in%20Non-Linear%20Forward%20Power%20Controller%20Design&rft.jtitle=IEEE%20access&rft.au=Loulijat,%20Azeddine&rft.date=2024&rft.volume=12&rft.spage=58675&rft.epage=58689&rft.pages=58675-58689&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3381613&rft_dat=%3Cproquest_ieee_%3E3050303999%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050303999&rft_id=info:pmid/&rft_ieee_id=10478889&rft_doaj_id=oai_doaj_org_article_aeec6de627224554a9632ced9f3c2d8a&rfr_iscdi=true |