Pin-Opt: Graph Representation Learning for Large-Scale Pin Assignment Optimization of Microbumps Considering Signal and Power Integrity

In this work, we propose a deep reinforcement learning (DRL) framework called Pin-opt, designed to create a reusable solver capable of optimizing pin assignment to minimize signal integrity (SI) and power integrity (PI) degradation in microbump packages. The increasing data rates of high-bandwidth s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2024-04, Vol.14 (4), p.681-692
Hauptverfasser: Park, Joonsang, Choi, Seonguk, Son, Keeyoung, Lee, Junghyun, Shin, Taein, Kim, Keunwoo, Sim, Boogyo, Kim, Seongguk, Kim, Jihun, Yoon, Jiwon, Kim, Youngwoo, Kim, Joungho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 692
container_issue 4
container_start_page 681
container_title IEEE transactions on components, packaging, and manufacturing technology (2011)
container_volume 14
creator Park, Joonsang
Choi, Seonguk
Son, Keeyoung
Lee, Junghyun
Shin, Taein
Kim, Keunwoo
Sim, Boogyo
Kim, Seongguk
Kim, Jihun
Yoon, Jiwon
Kim, Youngwoo
Kim, Joungho
description In this work, we propose a deep reinforcement learning (DRL) framework called Pin-opt, designed to create a reusable solver capable of optimizing pin assignment to minimize signal integrity (SI) and power integrity (PI) degradation in microbump packages. The increasing data rates of high-bandwidth systems have made SI/PI issues critical for ensuring the reliability of these systems. While previous research using meta-heuristic methods has optimized pin assignment to reduce SI/PI degradation in similar vertical interconnections, these approaches tend to be inflexible, providing problem-specific solutions suitable only for square-shaped pin arrangements. Our approach, Pin-opt, leverages the advantages of a learning-based method to create a practical solution applicable to pin maps of any shape and with a very large pin count. By representing pins as graphs during the training process, Pin-opt becomes adaptable to any pin arrangement and demonstrates significant performance improvements when solving large-scale pin assignment problems. We evaluate the performance, computational cost, reusability, and scalability of Pin-opt by comparing it to the genetic algorithm (GA), a conventional meta-heuristic method used for solving optimization tasks. To demonstrate its practicality, Pin-opt is also applied to a pin map of high bandwidth memory (HBM).
doi_str_mv 10.1109/TCPMT.2024.3381342
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10478710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10478710</ieee_id><sourcerecordid>3052182047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-f965082720f9d12a894932ca3d49999ba8e63110c890d2661ee1cc66795af74e3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhosoOOb-gHgR8LozH22TeDeGzkHHhpvXJWtPa8aa1qRD5h_wb5vZIZ6bnIv3eTl5guCW4DEhWD5spqvFZkwxjcaMCcIiehEMKImTkEkRX_7tMb4ORs7tsJ9YYI7ZIPheaRMu2-4Rzaxq39ErtBYcmE51ujEoBWWNNhUqG4tSZSsI17naA_IYmjinK1P7MPINutZfPdSUaKFz22wPdevQtDFOF2BPLWufV3ukTIFWzSdYNDcdVFZ3x5vgqlR7B6PzOwzenp8205cwXc7m00ka5jTiXVjKJMaCcopLWRCqhIwko7liRST9bJWAhHkpuZC4oElCAEieJwmXsSp5BGwY3Pe9rW0-DuC6bNccrD_KZQzHlAiKI-5TtE_5Xzhnocxaq2tljxnB2cl59us8OznPzs49dNdDGgD-AREXnGD2A_4_fkc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052182047</pqid></control><display><type>article</type><title>Pin-Opt: Graph Representation Learning for Large-Scale Pin Assignment Optimization of Microbumps Considering Signal and Power Integrity</title><source>IEEE Electronic Library (IEL)</source><creator>Park, Joonsang ; Choi, Seonguk ; Son, Keeyoung ; Lee, Junghyun ; Shin, Taein ; Kim, Keunwoo ; Sim, Boogyo ; Kim, Seongguk ; Kim, Jihun ; Yoon, Jiwon ; Kim, Youngwoo ; Kim, Joungho</creator><creatorcontrib>Park, Joonsang ; Choi, Seonguk ; Son, Keeyoung ; Lee, Junghyun ; Shin, Taein ; Kim, Keunwoo ; Sim, Boogyo ; Kim, Seongguk ; Kim, Jihun ; Yoon, Jiwon ; Kim, Youngwoo ; Kim, Joungho</creatorcontrib><description>In this work, we propose a deep reinforcement learning (DRL) framework called Pin-opt, designed to create a reusable solver capable of optimizing pin assignment to minimize signal integrity (SI) and power integrity (PI) degradation in microbump packages. The increasing data rates of high-bandwidth systems have made SI/PI issues critical for ensuring the reliability of these systems. While previous research using meta-heuristic methods has optimized pin assignment to reduce SI/PI degradation in similar vertical interconnections, these approaches tend to be inflexible, providing problem-specific solutions suitable only for square-shaped pin arrangements. Our approach, Pin-opt, leverages the advantages of a learning-based method to create a practical solution applicable to pin maps of any shape and with a very large pin count. By representing pins as graphs during the training process, Pin-opt becomes adaptable to any pin arrangement and demonstrates significant performance improvements when solving large-scale pin assignment problems. We evaluate the performance, computational cost, reusability, and scalability of Pin-opt by comparing it to the genetic algorithm (GA), a conventional meta-heuristic method used for solving optimization tasks. To demonstrate its practicality, Pin-opt is also applied to a pin map of high bandwidth memory (HBM).</description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2024.3381342</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computational efficiency ; Deep learning ; Deep reinforcement learning ; Deep reinforcement learning (DRL) ; Degradation ; Genetic algorithms ; graph representation learning ; Graph representations ; Graphical representations ; Heuristic methods ; Machine learning ; Manufacturing ; Metaheuristics ; Optimization ; Packaging ; Performance evaluation ; pin assignment ; power integrity (PI) ; Representation learning ; Signal integrity ; signal integrity (SI) ; System reliability ; Training</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2024-04, Vol.14 (4), p.681-692</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-f965082720f9d12a894932ca3d49999ba8e63110c890d2661ee1cc66795af74e3</cites><orcidid>0000-0003-1083-0385 ; 0000-0003-4269-7005 ; 0000-0002-8925-2604 ; 0000-0003-0096-2296 ; 0000-0001-5147-3076 ; 0000-0001-7003-5207 ; 0000-0003-1376-0781 ; 0000-0003-3019-3678 ; 0009-0001-5055-8905 ; 0000-0003-1040-4458 ; 0000-0001-6399-4995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10478710$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10478710$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Park, Joonsang</creatorcontrib><creatorcontrib>Choi, Seonguk</creatorcontrib><creatorcontrib>Son, Keeyoung</creatorcontrib><creatorcontrib>Lee, Junghyun</creatorcontrib><creatorcontrib>Shin, Taein</creatorcontrib><creatorcontrib>Kim, Keunwoo</creatorcontrib><creatorcontrib>Sim, Boogyo</creatorcontrib><creatorcontrib>Kim, Seongguk</creatorcontrib><creatorcontrib>Kim, Jihun</creatorcontrib><creatorcontrib>Yoon, Jiwon</creatorcontrib><creatorcontrib>Kim, Youngwoo</creatorcontrib><creatorcontrib>Kim, Joungho</creatorcontrib><title>Pin-Opt: Graph Representation Learning for Large-Scale Pin Assignment Optimization of Microbumps Considering Signal and Power Integrity</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description>In this work, we propose a deep reinforcement learning (DRL) framework called Pin-opt, designed to create a reusable solver capable of optimizing pin assignment to minimize signal integrity (SI) and power integrity (PI) degradation in microbump packages. The increasing data rates of high-bandwidth systems have made SI/PI issues critical for ensuring the reliability of these systems. While previous research using meta-heuristic methods has optimized pin assignment to reduce SI/PI degradation in similar vertical interconnections, these approaches tend to be inflexible, providing problem-specific solutions suitable only for square-shaped pin arrangements. Our approach, Pin-opt, leverages the advantages of a learning-based method to create a practical solution applicable to pin maps of any shape and with a very large pin count. By representing pins as graphs during the training process, Pin-opt becomes adaptable to any pin arrangement and demonstrates significant performance improvements when solving large-scale pin assignment problems. We evaluate the performance, computational cost, reusability, and scalability of Pin-opt by comparing it to the genetic algorithm (GA), a conventional meta-heuristic method used for solving optimization tasks. To demonstrate its practicality, Pin-opt is also applied to a pin map of high bandwidth memory (HBM).</description><subject>Computational efficiency</subject><subject>Deep learning</subject><subject>Deep reinforcement learning</subject><subject>Deep reinforcement learning (DRL)</subject><subject>Degradation</subject><subject>Genetic algorithms</subject><subject>graph representation learning</subject><subject>Graph representations</subject><subject>Graphical representations</subject><subject>Heuristic methods</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Metaheuristics</subject><subject>Optimization</subject><subject>Packaging</subject><subject>Performance evaluation</subject><subject>pin assignment</subject><subject>power integrity (PI)</subject><subject>Representation learning</subject><subject>Signal integrity</subject><subject>signal integrity (SI)</subject><subject>System reliability</subject><subject>Training</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhosoOOb-gHgR8LozH22TeDeGzkHHhpvXJWtPa8aa1qRD5h_wb5vZIZ6bnIv3eTl5guCW4DEhWD5spqvFZkwxjcaMCcIiehEMKImTkEkRX_7tMb4ORs7tsJ9YYI7ZIPheaRMu2-4Rzaxq39ErtBYcmE51ujEoBWWNNhUqG4tSZSsI17naA_IYmjinK1P7MPINutZfPdSUaKFz22wPdevQtDFOF2BPLWufV3ukTIFWzSdYNDcdVFZ3x5vgqlR7B6PzOwzenp8205cwXc7m00ka5jTiXVjKJMaCcopLWRCqhIwko7liRST9bJWAhHkpuZC4oElCAEieJwmXsSp5BGwY3Pe9rW0-DuC6bNccrD_KZQzHlAiKI-5TtE_5Xzhnocxaq2tljxnB2cl59us8OznPzs49dNdDGgD-AREXnGD2A_4_fkc</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Park, Joonsang</creator><creator>Choi, Seonguk</creator><creator>Son, Keeyoung</creator><creator>Lee, Junghyun</creator><creator>Shin, Taein</creator><creator>Kim, Keunwoo</creator><creator>Sim, Boogyo</creator><creator>Kim, Seongguk</creator><creator>Kim, Jihun</creator><creator>Yoon, Jiwon</creator><creator>Kim, Youngwoo</creator><creator>Kim, Joungho</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1083-0385</orcidid><orcidid>https://orcid.org/0000-0003-4269-7005</orcidid><orcidid>https://orcid.org/0000-0002-8925-2604</orcidid><orcidid>https://orcid.org/0000-0003-0096-2296</orcidid><orcidid>https://orcid.org/0000-0001-5147-3076</orcidid><orcidid>https://orcid.org/0000-0001-7003-5207</orcidid><orcidid>https://orcid.org/0000-0003-1376-0781</orcidid><orcidid>https://orcid.org/0000-0003-3019-3678</orcidid><orcidid>https://orcid.org/0009-0001-5055-8905</orcidid><orcidid>https://orcid.org/0000-0003-1040-4458</orcidid><orcidid>https://orcid.org/0000-0001-6399-4995</orcidid></search><sort><creationdate>20240401</creationdate><title>Pin-Opt: Graph Representation Learning for Large-Scale Pin Assignment Optimization of Microbumps Considering Signal and Power Integrity</title><author>Park, Joonsang ; Choi, Seonguk ; Son, Keeyoung ; Lee, Junghyun ; Shin, Taein ; Kim, Keunwoo ; Sim, Boogyo ; Kim, Seongguk ; Kim, Jihun ; Yoon, Jiwon ; Kim, Youngwoo ; Kim, Joungho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-f965082720f9d12a894932ca3d49999ba8e63110c890d2661ee1cc66795af74e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computational efficiency</topic><topic>Deep learning</topic><topic>Deep reinforcement learning</topic><topic>Deep reinforcement learning (DRL)</topic><topic>Degradation</topic><topic>Genetic algorithms</topic><topic>graph representation learning</topic><topic>Graph representations</topic><topic>Graphical representations</topic><topic>Heuristic methods</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Metaheuristics</topic><topic>Optimization</topic><topic>Packaging</topic><topic>Performance evaluation</topic><topic>pin assignment</topic><topic>power integrity (PI)</topic><topic>Representation learning</topic><topic>Signal integrity</topic><topic>signal integrity (SI)</topic><topic>System reliability</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Joonsang</creatorcontrib><creatorcontrib>Choi, Seonguk</creatorcontrib><creatorcontrib>Son, Keeyoung</creatorcontrib><creatorcontrib>Lee, Junghyun</creatorcontrib><creatorcontrib>Shin, Taein</creatorcontrib><creatorcontrib>Kim, Keunwoo</creatorcontrib><creatorcontrib>Sim, Boogyo</creatorcontrib><creatorcontrib>Kim, Seongguk</creatorcontrib><creatorcontrib>Kim, Jihun</creatorcontrib><creatorcontrib>Yoon, Jiwon</creatorcontrib><creatorcontrib>Kim, Youngwoo</creatorcontrib><creatorcontrib>Kim, Joungho</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Park, Joonsang</au><au>Choi, Seonguk</au><au>Son, Keeyoung</au><au>Lee, Junghyun</au><au>Shin, Taein</au><au>Kim, Keunwoo</au><au>Sim, Boogyo</au><au>Kim, Seongguk</au><au>Kim, Jihun</au><au>Yoon, Jiwon</au><au>Kim, Youngwoo</au><au>Kim, Joungho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pin-Opt: Graph Representation Learning for Large-Scale Pin Assignment Optimization of Microbumps Considering Signal and Power Integrity</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>14</volume><issue>4</issue><spage>681</spage><epage>692</epage><pages>681-692</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract>In this work, we propose a deep reinforcement learning (DRL) framework called Pin-opt, designed to create a reusable solver capable of optimizing pin assignment to minimize signal integrity (SI) and power integrity (PI) degradation in microbump packages. The increasing data rates of high-bandwidth systems have made SI/PI issues critical for ensuring the reliability of these systems. While previous research using meta-heuristic methods has optimized pin assignment to reduce SI/PI degradation in similar vertical interconnections, these approaches tend to be inflexible, providing problem-specific solutions suitable only for square-shaped pin arrangements. Our approach, Pin-opt, leverages the advantages of a learning-based method to create a practical solution applicable to pin maps of any shape and with a very large pin count. By representing pins as graphs during the training process, Pin-opt becomes adaptable to any pin arrangement and demonstrates significant performance improvements when solving large-scale pin assignment problems. We evaluate the performance, computational cost, reusability, and scalability of Pin-opt by comparing it to the genetic algorithm (GA), a conventional meta-heuristic method used for solving optimization tasks. To demonstrate its practicality, Pin-opt is also applied to a pin map of high bandwidth memory (HBM).</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2024.3381342</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1083-0385</orcidid><orcidid>https://orcid.org/0000-0003-4269-7005</orcidid><orcidid>https://orcid.org/0000-0002-8925-2604</orcidid><orcidid>https://orcid.org/0000-0003-0096-2296</orcidid><orcidid>https://orcid.org/0000-0001-5147-3076</orcidid><orcidid>https://orcid.org/0000-0001-7003-5207</orcidid><orcidid>https://orcid.org/0000-0003-1376-0781</orcidid><orcidid>https://orcid.org/0000-0003-3019-3678</orcidid><orcidid>https://orcid.org/0009-0001-5055-8905</orcidid><orcidid>https://orcid.org/0000-0003-1040-4458</orcidid><orcidid>https://orcid.org/0000-0001-6399-4995</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3950
ispartof IEEE transactions on components, packaging, and manufacturing technology (2011), 2024-04, Vol.14 (4), p.681-692
issn 2156-3950
2156-3985
language eng
recordid cdi_ieee_primary_10478710
source IEEE Electronic Library (IEL)
subjects Computational efficiency
Deep learning
Deep reinforcement learning
Deep reinforcement learning (DRL)
Degradation
Genetic algorithms
graph representation learning
Graph representations
Graphical representations
Heuristic methods
Machine learning
Manufacturing
Metaheuristics
Optimization
Packaging
Performance evaluation
pin assignment
power integrity (PI)
Representation learning
Signal integrity
signal integrity (SI)
System reliability
Training
title Pin-Opt: Graph Representation Learning for Large-Scale Pin Assignment Optimization of Microbumps Considering Signal and Power Integrity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A38%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pin-Opt:%20Graph%20Representation%20Learning%20for%20Large-Scale%20Pin%20Assignment%20Optimization%20of%20Microbumps%20Considering%20Signal%20and%20Power%20Integrity&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Park,%20Joonsang&rft.date=2024-04-01&rft.volume=14&rft.issue=4&rft.spage=681&rft.epage=692&rft.pages=681-692&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2024.3381342&rft_dat=%3Cproquest_RIE%3E3052182047%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3052182047&rft_id=info:pmid/&rft_ieee_id=10478710&rfr_iscdi=true