Leadership Inference for Multi-Agent Interactions

Effectively predicting intent and behavior requires inferring leadership in multi-agent interactions. Dynamic games provide an expressive theoretical framework for modeling these interactions. Employing this framework, we propose a novel method to infer the leader in a two-agent game by observing th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2024-05, Vol.9 (5), p.1-8
Hauptverfasser: Khan, Hamzah I., Fridovich-Keil, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 5
container_start_page 1
container_title IEEE robotics and automation letters
container_volume 9
creator Khan, Hamzah I.
Fridovich-Keil, David
description Effectively predicting intent and behavior requires inferring leadership in multi-agent interactions. Dynamic games provide an expressive theoretical framework for modeling these interactions. Employing this framework, we propose a novel method to infer the leader in a two-agent game by observing the agents' behavior in complex, long-horizon interactions. We make two contributions. First, we introduce an iterative algorithm that solves dynamic two-agent Stackelberg games with nonlinear dynamics and nonquadratic costs, and demonstrate that it consistently converges in repeated trials. Second, we propose the Stackelberg Leadership Filter (SLF), an online method for identifying the leading agent in interactive scenarios based on observations of the game interactions. We validate the leadership filter's efficacy on simulated driving scenarios to demonstrate that the SLF can draw conclusions about leadership that match right-of-way expectations.
doi_str_mv 10.1109/LRA.2024.3381469
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10478657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10478657</ieee_id><sourcerecordid>3035274699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-757cdd84fc49cef81d39a05661d008135b88552f48b37725cb5b3392e55afe3a3</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EElXpzsBQiTnF9sWxPUYVH5WCkBDMluOcIVVJgu0O_Pe4aodOd9K9d_fuR8gtoyvGqH5o3usVp7xcAShWVvqCzDhIWYCsqsuz_posYtxSSpngErSYEdag7TDE735abgaPAQeHSz-G5et-l_qi_sIh5UnCYF3qxyHekCtvdxEXpzonn0-PH-uXonl73qzrpnBc81RIIV3XqdK7Ujv0inWgLRVVxTpKFQPRKiUE96VqczouXCtaAM1RCOsRLMzJ_XHvFMbfPcZktuM-DPmkAQo5f_5TZxU9qlwYYwzozRT6Hxv-DKPmwMZkNubAxpzYZMvd0dIj4pm8lKoSEv4B5-td4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035274699</pqid></control><display><type>article</type><title>Leadership Inference for Multi-Agent Interactions</title><source>IEEE Electronic Library (IEL)</source><creator>Khan, Hamzah I. ; Fridovich-Keil, David</creator><creatorcontrib>Khan, Hamzah I. ; Fridovich-Keil, David</creatorcontrib><description>Effectively predicting intent and behavior requires inferring leadership in multi-agent interactions. Dynamic games provide an expressive theoretical framework for modeling these interactions. Employing this framework, we propose a novel method to infer the leader in a two-agent game by observing the agents' behavior in complex, long-horizon interactions. We make two contributions. First, we introduce an iterative algorithm that solves dynamic two-agent Stackelberg games with nonlinear dynamics and nonquadratic costs, and demonstrate that it consistently converges in repeated trials. Second, we propose the Stackelberg Leadership Filter (SLF), an online method for identifying the leading agent in interactive scenarios based on observations of the game interactions. We validate the leadership filter's efficacy on simulated driving scenarios to demonstrate that the SLF can draw conclusions about leadership that match right-of-way expectations.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2024.3381469</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Costs ; Game theory ; Games ; Heuristic algorithms ; Iterative algorithms ; Iterative methods ; Leadership ; Leadership Inference ; Multiagent systems ; Nonlinear dynamical systems ; Nonlinear dynamics ; Optimization and Optimal Control ; Probabilistic Inference ; Stackelberg Games ; Trajectory</subject><ispartof>IEEE robotics and automation letters, 2024-05, Vol.9 (5), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-757cdd84fc49cef81d39a05661d008135b88552f48b37725cb5b3392e55afe3a3</citedby><cites>FETCH-LOGICAL-c292t-757cdd84fc49cef81d39a05661d008135b88552f48b37725cb5b3392e55afe3a3</cites><orcidid>0000-0001-5481-6388 ; 0000-0002-5866-6441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10478657$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10478657$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khan, Hamzah I.</creatorcontrib><creatorcontrib>Fridovich-Keil, David</creatorcontrib><title>Leadership Inference for Multi-Agent Interactions</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Effectively predicting intent and behavior requires inferring leadership in multi-agent interactions. Dynamic games provide an expressive theoretical framework for modeling these interactions. Employing this framework, we propose a novel method to infer the leader in a two-agent game by observing the agents' behavior in complex, long-horizon interactions. We make two contributions. First, we introduce an iterative algorithm that solves dynamic two-agent Stackelberg games with nonlinear dynamics and nonquadratic costs, and demonstrate that it consistently converges in repeated trials. Second, we propose the Stackelberg Leadership Filter (SLF), an online method for identifying the leading agent in interactive scenarios based on observations of the game interactions. We validate the leadership filter's efficacy on simulated driving scenarios to demonstrate that the SLF can draw conclusions about leadership that match right-of-way expectations.</description><subject>Costs</subject><subject>Game theory</subject><subject>Games</subject><subject>Heuristic algorithms</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Leadership</subject><subject>Leadership Inference</subject><subject>Multiagent systems</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear dynamics</subject><subject>Optimization and Optimal Control</subject><subject>Probabilistic Inference</subject><subject>Stackelberg Games</subject><subject>Trajectory</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAQxS0EElXpzsBQiTnF9sWxPUYVH5WCkBDMluOcIVVJgu0O_Pe4aodOd9K9d_fuR8gtoyvGqH5o3usVp7xcAShWVvqCzDhIWYCsqsuz_posYtxSSpngErSYEdag7TDE735abgaPAQeHSz-G5et-l_qi_sIh5UnCYF3qxyHekCtvdxEXpzonn0-PH-uXonl73qzrpnBc81RIIV3XqdK7Ujv0inWgLRVVxTpKFQPRKiUE96VqczouXCtaAM1RCOsRLMzJ_XHvFMbfPcZktuM-DPmkAQo5f_5TZxU9qlwYYwzozRT6Hxv-DKPmwMZkNubAxpzYZMvd0dIj4pm8lKoSEv4B5-td4w</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Khan, Hamzah I.</creator><creator>Fridovich-Keil, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5481-6388</orcidid><orcidid>https://orcid.org/0000-0002-5866-6441</orcidid></search><sort><creationdate>20240501</creationdate><title>Leadership Inference for Multi-Agent Interactions</title><author>Khan, Hamzah I. ; Fridovich-Keil, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-757cdd84fc49cef81d39a05661d008135b88552f48b37725cb5b3392e55afe3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Costs</topic><topic>Game theory</topic><topic>Games</topic><topic>Heuristic algorithms</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Leadership</topic><topic>Leadership Inference</topic><topic>Multiagent systems</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear dynamics</topic><topic>Optimization and Optimal Control</topic><topic>Probabilistic Inference</topic><topic>Stackelberg Games</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Hamzah I.</creatorcontrib><creatorcontrib>Fridovich-Keil, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khan, Hamzah I.</au><au>Fridovich-Keil, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leadership Inference for Multi-Agent Interactions</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>9</volume><issue>5</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Effectively predicting intent and behavior requires inferring leadership in multi-agent interactions. Dynamic games provide an expressive theoretical framework for modeling these interactions. Employing this framework, we propose a novel method to infer the leader in a two-agent game by observing the agents' behavior in complex, long-horizon interactions. We make two contributions. First, we introduce an iterative algorithm that solves dynamic two-agent Stackelberg games with nonlinear dynamics and nonquadratic costs, and demonstrate that it consistently converges in repeated trials. Second, we propose the Stackelberg Leadership Filter (SLF), an online method for identifying the leading agent in interactive scenarios based on observations of the game interactions. We validate the leadership filter's efficacy on simulated driving scenarios to demonstrate that the SLF can draw conclusions about leadership that match right-of-way expectations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2024.3381469</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5481-6388</orcidid><orcidid>https://orcid.org/0000-0002-5866-6441</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2024-05, Vol.9 (5), p.1-8
issn 2377-3766
2377-3766
language eng
recordid cdi_ieee_primary_10478657
source IEEE Electronic Library (IEL)
subjects Costs
Game theory
Games
Heuristic algorithms
Iterative algorithms
Iterative methods
Leadership
Leadership Inference
Multiagent systems
Nonlinear dynamical systems
Nonlinear dynamics
Optimization and Optimal Control
Probabilistic Inference
Stackelberg Games
Trajectory
title Leadership Inference for Multi-Agent Interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T00%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leadership%20Inference%20for%20Multi-Agent%20Interactions&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Khan,%20Hamzah%20I.&rft.date=2024-05-01&rft.volume=9&rft.issue=5&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2024.3381469&rft_dat=%3Cproquest_RIE%3E3035274699%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035274699&rft_id=info:pmid/&rft_ieee_id=10478657&rfr_iscdi=true