Leadership Inference for Multi-Agent Interactions
Effectively predicting intent and behavior requires inferring leadership in multi-agent interactions. Dynamic games provide an expressive theoretical framework for modeling these interactions. Employing this framework, we propose a novel method to infer the leader in a two-agent game by observing th...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2024-05, Vol.9 (5), p.1-8 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE robotics and automation letters |
container_volume | 9 |
creator | Khan, Hamzah I. Fridovich-Keil, David |
description | Effectively predicting intent and behavior requires inferring leadership in multi-agent interactions. Dynamic games provide an expressive theoretical framework for modeling these interactions. Employing this framework, we propose a novel method to infer the leader in a two-agent game by observing the agents' behavior in complex, long-horizon interactions. We make two contributions. First, we introduce an iterative algorithm that solves dynamic two-agent Stackelberg games with nonlinear dynamics and nonquadratic costs, and demonstrate that it consistently converges in repeated trials. Second, we propose the Stackelberg Leadership Filter (SLF), an online method for identifying the leading agent in interactive scenarios based on observations of the game interactions. We validate the leadership filter's efficacy on simulated driving scenarios to demonstrate that the SLF can draw conclusions about leadership that match right-of-way expectations. |
doi_str_mv | 10.1109/LRA.2024.3381469 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10478657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10478657</ieee_id><sourcerecordid>3035274699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-757cdd84fc49cef81d39a05661d008135b88552f48b37725cb5b3392e55afe3a3</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EElXpzsBQiTnF9sWxPUYVH5WCkBDMluOcIVVJgu0O_Pe4aodOd9K9d_fuR8gtoyvGqH5o3usVp7xcAShWVvqCzDhIWYCsqsuz_posYtxSSpngErSYEdag7TDE735abgaPAQeHSz-G5et-l_qi_sIh5UnCYF3qxyHekCtvdxEXpzonn0-PH-uXonl73qzrpnBc81RIIV3XqdK7Ujv0inWgLRVVxTpKFQPRKiUE96VqczouXCtaAM1RCOsRLMzJ_XHvFMbfPcZktuM-DPmkAQo5f_5TZxU9qlwYYwzozRT6Hxv-DKPmwMZkNubAxpzYZMvd0dIj4pm8lKoSEv4B5-td4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035274699</pqid></control><display><type>article</type><title>Leadership Inference for Multi-Agent Interactions</title><source>IEEE Electronic Library (IEL)</source><creator>Khan, Hamzah I. ; Fridovich-Keil, David</creator><creatorcontrib>Khan, Hamzah I. ; Fridovich-Keil, David</creatorcontrib><description>Effectively predicting intent and behavior requires inferring leadership in multi-agent interactions. Dynamic games provide an expressive theoretical framework for modeling these interactions. Employing this framework, we propose a novel method to infer the leader in a two-agent game by observing the agents' behavior in complex, long-horizon interactions. We make two contributions. First, we introduce an iterative algorithm that solves dynamic two-agent Stackelberg games with nonlinear dynamics and nonquadratic costs, and demonstrate that it consistently converges in repeated trials. Second, we propose the Stackelberg Leadership Filter (SLF), an online method for identifying the leading agent in interactive scenarios based on observations of the game interactions. We validate the leadership filter's efficacy on simulated driving scenarios to demonstrate that the SLF can draw conclusions about leadership that match right-of-way expectations.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2024.3381469</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Costs ; Game theory ; Games ; Heuristic algorithms ; Iterative algorithms ; Iterative methods ; Leadership ; Leadership Inference ; Multiagent systems ; Nonlinear dynamical systems ; Nonlinear dynamics ; Optimization and Optimal Control ; Probabilistic Inference ; Stackelberg Games ; Trajectory</subject><ispartof>IEEE robotics and automation letters, 2024-05, Vol.9 (5), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-757cdd84fc49cef81d39a05661d008135b88552f48b37725cb5b3392e55afe3a3</citedby><cites>FETCH-LOGICAL-c292t-757cdd84fc49cef81d39a05661d008135b88552f48b37725cb5b3392e55afe3a3</cites><orcidid>0000-0001-5481-6388 ; 0000-0002-5866-6441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10478657$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10478657$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khan, Hamzah I.</creatorcontrib><creatorcontrib>Fridovich-Keil, David</creatorcontrib><title>Leadership Inference for Multi-Agent Interactions</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Effectively predicting intent and behavior requires inferring leadership in multi-agent interactions. Dynamic games provide an expressive theoretical framework for modeling these interactions. Employing this framework, we propose a novel method to infer the leader in a two-agent game by observing the agents' behavior in complex, long-horizon interactions. We make two contributions. First, we introduce an iterative algorithm that solves dynamic two-agent Stackelberg games with nonlinear dynamics and nonquadratic costs, and demonstrate that it consistently converges in repeated trials. Second, we propose the Stackelberg Leadership Filter (SLF), an online method for identifying the leading agent in interactive scenarios based on observations of the game interactions. We validate the leadership filter's efficacy on simulated driving scenarios to demonstrate that the SLF can draw conclusions about leadership that match right-of-way expectations.</description><subject>Costs</subject><subject>Game theory</subject><subject>Games</subject><subject>Heuristic algorithms</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Leadership</subject><subject>Leadership Inference</subject><subject>Multiagent systems</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear dynamics</subject><subject>Optimization and Optimal Control</subject><subject>Probabilistic Inference</subject><subject>Stackelberg Games</subject><subject>Trajectory</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAQxS0EElXpzsBQiTnF9sWxPUYVH5WCkBDMluOcIVVJgu0O_Pe4aodOd9K9d_fuR8gtoyvGqH5o3usVp7xcAShWVvqCzDhIWYCsqsuz_posYtxSSpngErSYEdag7TDE735abgaPAQeHSz-G5et-l_qi_sIh5UnCYF3qxyHekCtvdxEXpzonn0-PH-uXonl73qzrpnBc81RIIV3XqdK7Ujv0inWgLRVVxTpKFQPRKiUE96VqczouXCtaAM1RCOsRLMzJ_XHvFMbfPcZktuM-DPmkAQo5f_5TZxU9qlwYYwzozRT6Hxv-DKPmwMZkNubAxpzYZMvd0dIj4pm8lKoSEv4B5-td4w</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Khan, Hamzah I.</creator><creator>Fridovich-Keil, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5481-6388</orcidid><orcidid>https://orcid.org/0000-0002-5866-6441</orcidid></search><sort><creationdate>20240501</creationdate><title>Leadership Inference for Multi-Agent Interactions</title><author>Khan, Hamzah I. ; Fridovich-Keil, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-757cdd84fc49cef81d39a05661d008135b88552f48b37725cb5b3392e55afe3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Costs</topic><topic>Game theory</topic><topic>Games</topic><topic>Heuristic algorithms</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Leadership</topic><topic>Leadership Inference</topic><topic>Multiagent systems</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear dynamics</topic><topic>Optimization and Optimal Control</topic><topic>Probabilistic Inference</topic><topic>Stackelberg Games</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Hamzah I.</creatorcontrib><creatorcontrib>Fridovich-Keil, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khan, Hamzah I.</au><au>Fridovich-Keil, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leadership Inference for Multi-Agent Interactions</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>9</volume><issue>5</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Effectively predicting intent and behavior requires inferring leadership in multi-agent interactions. Dynamic games provide an expressive theoretical framework for modeling these interactions. Employing this framework, we propose a novel method to infer the leader in a two-agent game by observing the agents' behavior in complex, long-horizon interactions. We make two contributions. First, we introduce an iterative algorithm that solves dynamic two-agent Stackelberg games with nonlinear dynamics and nonquadratic costs, and demonstrate that it consistently converges in repeated trials. Second, we propose the Stackelberg Leadership Filter (SLF), an online method for identifying the leading agent in interactive scenarios based on observations of the game interactions. We validate the leadership filter's efficacy on simulated driving scenarios to demonstrate that the SLF can draw conclusions about leadership that match right-of-way expectations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2024.3381469</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5481-6388</orcidid><orcidid>https://orcid.org/0000-0002-5866-6441</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2024-05, Vol.9 (5), p.1-8 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_ieee_primary_10478657 |
source | IEEE Electronic Library (IEL) |
subjects | Costs Game theory Games Heuristic algorithms Iterative algorithms Iterative methods Leadership Leadership Inference Multiagent systems Nonlinear dynamical systems Nonlinear dynamics Optimization and Optimal Control Probabilistic Inference Stackelberg Games Trajectory |
title | Leadership Inference for Multi-Agent Interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T00%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leadership%20Inference%20for%20Multi-Agent%20Interactions&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Khan,%20Hamzah%20I.&rft.date=2024-05-01&rft.volume=9&rft.issue=5&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2024.3381469&rft_dat=%3Cproquest_RIE%3E3035274699%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035274699&rft_id=info:pmid/&rft_ieee_id=10478657&rfr_iscdi=true |