An Automated Approach for Predicting Road Traffic Accident Severity Using Transformer Learning and Explainable AI Technique

Traffic accidents continue to be a significant cause of fatalities, injuries, and considerable disruptions on our highways. Understanding the underlying factors behind these incidents is crucial for improving safety on road networks. While recent studies have highlighted the usefulness of predictive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.61062-61072
Hauptverfasser: Aboulola, Omar Ibrahim, Alabdulqader, Ebtisam Abdullah, AlArfaj, Aisha Ahmed, Alsubai, Shtwai, Kim, Tai-Hoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 61072
container_issue
container_start_page 61062
container_title IEEE access
container_volume 12
creator Aboulola, Omar Ibrahim
Alabdulqader, Ebtisam Abdullah
AlArfaj, Aisha Ahmed
Alsubai, Shtwai
Kim, Tai-Hoon
description Traffic accidents continue to be a significant cause of fatalities, injuries, and considerable disruptions on our highways. Understanding the underlying factors behind these incidents is crucial for improving safety on road networks. While recent studies have highlighted the usefulness of predictive modeling in uncovering factors leading to accidents, there remains a gap in explaining the inner workings of complex machine learning and deep learning models and how various features influence accident prediction. This lack of transparency may lead to these models being perceived as black boxes, potentially undermining trust in their findings among stakeholders. The primary aim of this research is to develop predictive models using diverse transfer learning techniques and shed light on the most influential factors using Shapley values. In predicting injury severity in accidents, we employ Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Residual Networks (ResNET), EfficientNetB4, InceptionV3, Extreme Inception (Xception), Visual Geometry Group (VGG19), AlexNet, and MobileNet. Among these models, MobileNet emerges with the highest accuracy at 0.9817. Furthermore, by comprehending how different features impact accident prediction models, researchers can deepen their understanding of the factors contributing to accidents and devise more effective interventions for their prevention.
doi_str_mv 10.1109/ACCESS.2024.3380895
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10477984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10477984</ieee_id><doaj_id>oai_doaj_org_article_9ca032d01b974ca38efbf8894b06eeb9</doaj_id><sourcerecordid>3050303799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-30e8703958c6b6f27652bae075713e2f7f6950eb34fe5a9f8bb08ba82429d7a43</originalsourceid><addsrcrecordid>eNpNUcFqGzEQXUoDCWm-IDkIerarlVYr6bgYtzUYWmrnLEbaUSJjS652XRr689V2Q4kuI57ee6OZV1X3NV3WNdWfutVqvdstGWXNknNFlRbvqhtWt3rBBW_fv7lfV3fDcKDlqAIJeVP96SLpLmM6wYg96c7nnMA9E58y-Z6xD24M8Yn8SNCTfQbvgyOdc6HHOJId_sIcxhfyOEyk8h6HIjxhJluEHCcQYk_Wv89HCBHsEUm3IXt0zzH8vOCH6srDccC713pbPX5e71dfF9tvXzarbrtwXOhxwSkqSbkWyrW29Uy2gllAKoWsOTIvfRmFouWNRwHaK2upsqBYw3QvoeG31Wb27RMczDmHE-QXkyCYf0DKTwbyGNwRjXZAOetpbbVsHHCF3nqldGNpi2h18fo4e5VFlRGG0RzSJcfyfcOpoJxyqScWn1kup2HI6P93ramZQjNzaGYKzbyGVlQPsyog4htFI6VWDf8LaWOThw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050303799</pqid></control><display><type>article</type><title>An Automated Approach for Predicting Road Traffic Accident Severity Using Transformer Learning and Explainable AI Technique</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Aboulola, Omar Ibrahim ; Alabdulqader, Ebtisam Abdullah ; AlArfaj, Aisha Ahmed ; Alsubai, Shtwai ; Kim, Tai-Hoon</creator><creatorcontrib>Aboulola, Omar Ibrahim ; Alabdulqader, Ebtisam Abdullah ; AlArfaj, Aisha Ahmed ; Alsubai, Shtwai ; Kim, Tai-Hoon</creatorcontrib><description>Traffic accidents continue to be a significant cause of fatalities, injuries, and considerable disruptions on our highways. Understanding the underlying factors behind these incidents is crucial for improving safety on road networks. While recent studies have highlighted the usefulness of predictive modeling in uncovering factors leading to accidents, there remains a gap in explaining the inner workings of complex machine learning and deep learning models and how various features influence accident prediction. This lack of transparency may lead to these models being perceived as black boxes, potentially undermining trust in their findings among stakeholders. The primary aim of this research is to develop predictive models using diverse transfer learning techniques and shed light on the most influential factors using Shapley values. In predicting injury severity in accidents, we employ Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Residual Networks (ResNET), EfficientNetB4, InceptionV3, Extreme Inception (Xception), Visual Geometry Group (VGG19), AlexNet, and MobileNet. Among these models, MobileNet emerges with the highest accuracy at 0.9817. Furthermore, by comprehending how different features impact accident prediction models, researchers can deepen their understanding of the factors contributing to accidents and devise more effective interventions for their prevention.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3380895</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accident prediction ; Accidents ; Artificial neural networks ; Biological system modeling ; Deep learning ; Explainable AI ; explainable AI (XAI) ; Explainable artificial intelligence ; Fatalities ; Injuries ; Intelligent transportation system ; Intelligent transportation systems ; Machine learning ; MobileNet ; Multilayer perceptrons ; Prediction models ; Predictive models ; road accidents severity ; Road traffic ; Roads ; Traffic accidents ; Traffic accidents &amp; safety ; Transfer learning ; Vehicle safety</subject><ispartof>IEEE access, 2024, Vol.12, p.61062-61072</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-30e8703958c6b6f27652bae075713e2f7f6950eb34fe5a9f8bb08ba82429d7a43</cites><orcidid>0000-0002-8539-5560 ; 0000-0003-3928-2562 ; 0000-0002-6584-7400 ; 0000-0003-0117-8102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10477984$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Aboulola, Omar Ibrahim</creatorcontrib><creatorcontrib>Alabdulqader, Ebtisam Abdullah</creatorcontrib><creatorcontrib>AlArfaj, Aisha Ahmed</creatorcontrib><creatorcontrib>Alsubai, Shtwai</creatorcontrib><creatorcontrib>Kim, Tai-Hoon</creatorcontrib><title>An Automated Approach for Predicting Road Traffic Accident Severity Using Transformer Learning and Explainable AI Technique</title><title>IEEE access</title><addtitle>Access</addtitle><description>Traffic accidents continue to be a significant cause of fatalities, injuries, and considerable disruptions on our highways. Understanding the underlying factors behind these incidents is crucial for improving safety on road networks. While recent studies have highlighted the usefulness of predictive modeling in uncovering factors leading to accidents, there remains a gap in explaining the inner workings of complex machine learning and deep learning models and how various features influence accident prediction. This lack of transparency may lead to these models being perceived as black boxes, potentially undermining trust in their findings among stakeholders. The primary aim of this research is to develop predictive models using diverse transfer learning techniques and shed light on the most influential factors using Shapley values. In predicting injury severity in accidents, we employ Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Residual Networks (ResNET), EfficientNetB4, InceptionV3, Extreme Inception (Xception), Visual Geometry Group (VGG19), AlexNet, and MobileNet. Among these models, MobileNet emerges with the highest accuracy at 0.9817. Furthermore, by comprehending how different features impact accident prediction models, researchers can deepen their understanding of the factors contributing to accidents and devise more effective interventions for their prevention.</description><subject>Accident prediction</subject><subject>Accidents</subject><subject>Artificial neural networks</subject><subject>Biological system modeling</subject><subject>Deep learning</subject><subject>Explainable AI</subject><subject>explainable AI (XAI)</subject><subject>Explainable artificial intelligence</subject><subject>Fatalities</subject><subject>Injuries</subject><subject>Intelligent transportation system</subject><subject>Intelligent transportation systems</subject><subject>Machine learning</subject><subject>MobileNet</subject><subject>Multilayer perceptrons</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>road accidents severity</subject><subject>Road traffic</subject><subject>Roads</subject><subject>Traffic accidents</subject><subject>Traffic accidents &amp; safety</subject><subject>Transfer learning</subject><subject>Vehicle safety</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFqGzEQXUoDCWm-IDkIerarlVYr6bgYtzUYWmrnLEbaUSJjS652XRr689V2Q4kuI57ee6OZV1X3NV3WNdWfutVqvdstGWXNknNFlRbvqhtWt3rBBW_fv7lfV3fDcKDlqAIJeVP96SLpLmM6wYg96c7nnMA9E58y-Z6xD24M8Yn8SNCTfQbvgyOdc6HHOJId_sIcxhfyOEyk8h6HIjxhJluEHCcQYk_Wv89HCBHsEUm3IXt0zzH8vOCH6srDccC713pbPX5e71dfF9tvXzarbrtwXOhxwSkqSbkWyrW29Uy2gllAKoWsOTIvfRmFouWNRwHaK2upsqBYw3QvoeG31Wb27RMczDmHE-QXkyCYf0DKTwbyGNwRjXZAOetpbbVsHHCF3nqldGNpi2h18fo4e5VFlRGG0RzSJcfyfcOpoJxyqScWn1kup2HI6P93ramZQjNzaGYKzbyGVlQPsyog4htFI6VWDf8LaWOThw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Aboulola, Omar Ibrahim</creator><creator>Alabdulqader, Ebtisam Abdullah</creator><creator>AlArfaj, Aisha Ahmed</creator><creator>Alsubai, Shtwai</creator><creator>Kim, Tai-Hoon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8539-5560</orcidid><orcidid>https://orcid.org/0000-0003-3928-2562</orcidid><orcidid>https://orcid.org/0000-0002-6584-7400</orcidid><orcidid>https://orcid.org/0000-0003-0117-8102</orcidid></search><sort><creationdate>2024</creationdate><title>An Automated Approach for Predicting Road Traffic Accident Severity Using Transformer Learning and Explainable AI Technique</title><author>Aboulola, Omar Ibrahim ; Alabdulqader, Ebtisam Abdullah ; AlArfaj, Aisha Ahmed ; Alsubai, Shtwai ; Kim, Tai-Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-30e8703958c6b6f27652bae075713e2f7f6950eb34fe5a9f8bb08ba82429d7a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accident prediction</topic><topic>Accidents</topic><topic>Artificial neural networks</topic><topic>Biological system modeling</topic><topic>Deep learning</topic><topic>Explainable AI</topic><topic>explainable AI (XAI)</topic><topic>Explainable artificial intelligence</topic><topic>Fatalities</topic><topic>Injuries</topic><topic>Intelligent transportation system</topic><topic>Intelligent transportation systems</topic><topic>Machine learning</topic><topic>MobileNet</topic><topic>Multilayer perceptrons</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>road accidents severity</topic><topic>Road traffic</topic><topic>Roads</topic><topic>Traffic accidents</topic><topic>Traffic accidents &amp; safety</topic><topic>Transfer learning</topic><topic>Vehicle safety</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aboulola, Omar Ibrahim</creatorcontrib><creatorcontrib>Alabdulqader, Ebtisam Abdullah</creatorcontrib><creatorcontrib>AlArfaj, Aisha Ahmed</creatorcontrib><creatorcontrib>Alsubai, Shtwai</creatorcontrib><creatorcontrib>Kim, Tai-Hoon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aboulola, Omar Ibrahim</au><au>Alabdulqader, Ebtisam Abdullah</au><au>AlArfaj, Aisha Ahmed</au><au>Alsubai, Shtwai</au><au>Kim, Tai-Hoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Automated Approach for Predicting Road Traffic Accident Severity Using Transformer Learning and Explainable AI Technique</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>61062</spage><epage>61072</epage><pages>61062-61072</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Traffic accidents continue to be a significant cause of fatalities, injuries, and considerable disruptions on our highways. Understanding the underlying factors behind these incidents is crucial for improving safety on road networks. While recent studies have highlighted the usefulness of predictive modeling in uncovering factors leading to accidents, there remains a gap in explaining the inner workings of complex machine learning and deep learning models and how various features influence accident prediction. This lack of transparency may lead to these models being perceived as black boxes, potentially undermining trust in their findings among stakeholders. The primary aim of this research is to develop predictive models using diverse transfer learning techniques and shed light on the most influential factors using Shapley values. In predicting injury severity in accidents, we employ Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Residual Networks (ResNET), EfficientNetB4, InceptionV3, Extreme Inception (Xception), Visual Geometry Group (VGG19), AlexNet, and MobileNet. Among these models, MobileNet emerges with the highest accuracy at 0.9817. Furthermore, by comprehending how different features impact accident prediction models, researchers can deepen their understanding of the factors contributing to accidents and devise more effective interventions for their prevention.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3380895</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8539-5560</orcidid><orcidid>https://orcid.org/0000-0003-3928-2562</orcidid><orcidid>https://orcid.org/0000-0002-6584-7400</orcidid><orcidid>https://orcid.org/0000-0003-0117-8102</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.61062-61072
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10477984
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accident prediction
Accidents
Artificial neural networks
Biological system modeling
Deep learning
Explainable AI
explainable AI (XAI)
Explainable artificial intelligence
Fatalities
Injuries
Intelligent transportation system
Intelligent transportation systems
Machine learning
MobileNet
Multilayer perceptrons
Prediction models
Predictive models
road accidents severity
Road traffic
Roads
Traffic accidents
Traffic accidents & safety
Transfer learning
Vehicle safety
title An Automated Approach for Predicting Road Traffic Accident Severity Using Transformer Learning and Explainable AI Technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A19%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Automated%20Approach%20for%20Predicting%20Road%20Traffic%20Accident%20Severity%20Using%20Transformer%20Learning%20and%20Explainable%20AI%20Technique&rft.jtitle=IEEE%20access&rft.au=Aboulola,%20Omar%20Ibrahim&rft.date=2024&rft.volume=12&rft.spage=61062&rft.epage=61072&rft.pages=61062-61072&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3380895&rft_dat=%3Cproquest_ieee_%3E3050303799%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050303799&rft_id=info:pmid/&rft_ieee_id=10477984&rft_doaj_id=oai_doaj_org_article_9ca032d01b974ca38efbf8894b06eeb9&rfr_iscdi=true