An Automated Approach for Predicting Road Traffic Accident Severity Using Transformer Learning and Explainable AI Technique
Traffic accidents continue to be a significant cause of fatalities, injuries, and considerable disruptions on our highways. Understanding the underlying factors behind these incidents is crucial for improving safety on road networks. While recent studies have highlighted the usefulness of predictive...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.61062-61072 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 61072 |
---|---|
container_issue | |
container_start_page | 61062 |
container_title | IEEE access |
container_volume | 12 |
creator | Aboulola, Omar Ibrahim Alabdulqader, Ebtisam Abdullah AlArfaj, Aisha Ahmed Alsubai, Shtwai Kim, Tai-Hoon |
description | Traffic accidents continue to be a significant cause of fatalities, injuries, and considerable disruptions on our highways. Understanding the underlying factors behind these incidents is crucial for improving safety on road networks. While recent studies have highlighted the usefulness of predictive modeling in uncovering factors leading to accidents, there remains a gap in explaining the inner workings of complex machine learning and deep learning models and how various features influence accident prediction. This lack of transparency may lead to these models being perceived as black boxes, potentially undermining trust in their findings among stakeholders. The primary aim of this research is to develop predictive models using diverse transfer learning techniques and shed light on the most influential factors using Shapley values. In predicting injury severity in accidents, we employ Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Residual Networks (ResNET), EfficientNetB4, InceptionV3, Extreme Inception (Xception), Visual Geometry Group (VGG19), AlexNet, and MobileNet. Among these models, MobileNet emerges with the highest accuracy at 0.9817. Furthermore, by comprehending how different features impact accident prediction models, researchers can deepen their understanding of the factors contributing to accidents and devise more effective interventions for their prevention. |
doi_str_mv | 10.1109/ACCESS.2024.3380895 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10477984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10477984</ieee_id><doaj_id>oai_doaj_org_article_9ca032d01b974ca38efbf8894b06eeb9</doaj_id><sourcerecordid>3050303799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-30e8703958c6b6f27652bae075713e2f7f6950eb34fe5a9f8bb08ba82429d7a43</originalsourceid><addsrcrecordid>eNpNUcFqGzEQXUoDCWm-IDkIerarlVYr6bgYtzUYWmrnLEbaUSJjS652XRr689V2Q4kuI57ee6OZV1X3NV3WNdWfutVqvdstGWXNknNFlRbvqhtWt3rBBW_fv7lfV3fDcKDlqAIJeVP96SLpLmM6wYg96c7nnMA9E58y-Z6xD24M8Yn8SNCTfQbvgyOdc6HHOJId_sIcxhfyOEyk8h6HIjxhJluEHCcQYk_Wv89HCBHsEUm3IXt0zzH8vOCH6srDccC713pbPX5e71dfF9tvXzarbrtwXOhxwSkqSbkWyrW29Uy2gllAKoWsOTIvfRmFouWNRwHaK2upsqBYw3QvoeG31Wb27RMczDmHE-QXkyCYf0DKTwbyGNwRjXZAOetpbbVsHHCF3nqldGNpi2h18fo4e5VFlRGG0RzSJcfyfcOpoJxyqScWn1kup2HI6P93ramZQjNzaGYKzbyGVlQPsyog4htFI6VWDf8LaWOThw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050303799</pqid></control><display><type>article</type><title>An Automated Approach for Predicting Road Traffic Accident Severity Using Transformer Learning and Explainable AI Technique</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Aboulola, Omar Ibrahim ; Alabdulqader, Ebtisam Abdullah ; AlArfaj, Aisha Ahmed ; Alsubai, Shtwai ; Kim, Tai-Hoon</creator><creatorcontrib>Aboulola, Omar Ibrahim ; Alabdulqader, Ebtisam Abdullah ; AlArfaj, Aisha Ahmed ; Alsubai, Shtwai ; Kim, Tai-Hoon</creatorcontrib><description>Traffic accidents continue to be a significant cause of fatalities, injuries, and considerable disruptions on our highways. Understanding the underlying factors behind these incidents is crucial for improving safety on road networks. While recent studies have highlighted the usefulness of predictive modeling in uncovering factors leading to accidents, there remains a gap in explaining the inner workings of complex machine learning and deep learning models and how various features influence accident prediction. This lack of transparency may lead to these models being perceived as black boxes, potentially undermining trust in their findings among stakeholders. The primary aim of this research is to develop predictive models using diverse transfer learning techniques and shed light on the most influential factors using Shapley values. In predicting injury severity in accidents, we employ Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Residual Networks (ResNET), EfficientNetB4, InceptionV3, Extreme Inception (Xception), Visual Geometry Group (VGG19), AlexNet, and MobileNet. Among these models, MobileNet emerges with the highest accuracy at 0.9817. Furthermore, by comprehending how different features impact accident prediction models, researchers can deepen their understanding of the factors contributing to accidents and devise more effective interventions for their prevention.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3380895</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accident prediction ; Accidents ; Artificial neural networks ; Biological system modeling ; Deep learning ; Explainable AI ; explainable AI (XAI) ; Explainable artificial intelligence ; Fatalities ; Injuries ; Intelligent transportation system ; Intelligent transportation systems ; Machine learning ; MobileNet ; Multilayer perceptrons ; Prediction models ; Predictive models ; road accidents severity ; Road traffic ; Roads ; Traffic accidents ; Traffic accidents & safety ; Transfer learning ; Vehicle safety</subject><ispartof>IEEE access, 2024, Vol.12, p.61062-61072</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-30e8703958c6b6f27652bae075713e2f7f6950eb34fe5a9f8bb08ba82429d7a43</cites><orcidid>0000-0002-8539-5560 ; 0000-0003-3928-2562 ; 0000-0002-6584-7400 ; 0000-0003-0117-8102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10477984$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Aboulola, Omar Ibrahim</creatorcontrib><creatorcontrib>Alabdulqader, Ebtisam Abdullah</creatorcontrib><creatorcontrib>AlArfaj, Aisha Ahmed</creatorcontrib><creatorcontrib>Alsubai, Shtwai</creatorcontrib><creatorcontrib>Kim, Tai-Hoon</creatorcontrib><title>An Automated Approach for Predicting Road Traffic Accident Severity Using Transformer Learning and Explainable AI Technique</title><title>IEEE access</title><addtitle>Access</addtitle><description>Traffic accidents continue to be a significant cause of fatalities, injuries, and considerable disruptions on our highways. Understanding the underlying factors behind these incidents is crucial for improving safety on road networks. While recent studies have highlighted the usefulness of predictive modeling in uncovering factors leading to accidents, there remains a gap in explaining the inner workings of complex machine learning and deep learning models and how various features influence accident prediction. This lack of transparency may lead to these models being perceived as black boxes, potentially undermining trust in their findings among stakeholders. The primary aim of this research is to develop predictive models using diverse transfer learning techniques and shed light on the most influential factors using Shapley values. In predicting injury severity in accidents, we employ Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Residual Networks (ResNET), EfficientNetB4, InceptionV3, Extreme Inception (Xception), Visual Geometry Group (VGG19), AlexNet, and MobileNet. Among these models, MobileNet emerges with the highest accuracy at 0.9817. Furthermore, by comprehending how different features impact accident prediction models, researchers can deepen their understanding of the factors contributing to accidents and devise more effective interventions for their prevention.</description><subject>Accident prediction</subject><subject>Accidents</subject><subject>Artificial neural networks</subject><subject>Biological system modeling</subject><subject>Deep learning</subject><subject>Explainable AI</subject><subject>explainable AI (XAI)</subject><subject>Explainable artificial intelligence</subject><subject>Fatalities</subject><subject>Injuries</subject><subject>Intelligent transportation system</subject><subject>Intelligent transportation systems</subject><subject>Machine learning</subject><subject>MobileNet</subject><subject>Multilayer perceptrons</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>road accidents severity</subject><subject>Road traffic</subject><subject>Roads</subject><subject>Traffic accidents</subject><subject>Traffic accidents & safety</subject><subject>Transfer learning</subject><subject>Vehicle safety</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFqGzEQXUoDCWm-IDkIerarlVYr6bgYtzUYWmrnLEbaUSJjS652XRr689V2Q4kuI57ee6OZV1X3NV3WNdWfutVqvdstGWXNknNFlRbvqhtWt3rBBW_fv7lfV3fDcKDlqAIJeVP96SLpLmM6wYg96c7nnMA9E58y-Z6xD24M8Yn8SNCTfQbvgyOdc6HHOJId_sIcxhfyOEyk8h6HIjxhJluEHCcQYk_Wv89HCBHsEUm3IXt0zzH8vOCH6srDccC713pbPX5e71dfF9tvXzarbrtwXOhxwSkqSbkWyrW29Uy2gllAKoWsOTIvfRmFouWNRwHaK2upsqBYw3QvoeG31Wb27RMczDmHE-QXkyCYf0DKTwbyGNwRjXZAOetpbbVsHHCF3nqldGNpi2h18fo4e5VFlRGG0RzSJcfyfcOpoJxyqScWn1kup2HI6P93ramZQjNzaGYKzbyGVlQPsyog4htFI6VWDf8LaWOThw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Aboulola, Omar Ibrahim</creator><creator>Alabdulqader, Ebtisam Abdullah</creator><creator>AlArfaj, Aisha Ahmed</creator><creator>Alsubai, Shtwai</creator><creator>Kim, Tai-Hoon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8539-5560</orcidid><orcidid>https://orcid.org/0000-0003-3928-2562</orcidid><orcidid>https://orcid.org/0000-0002-6584-7400</orcidid><orcidid>https://orcid.org/0000-0003-0117-8102</orcidid></search><sort><creationdate>2024</creationdate><title>An Automated Approach for Predicting Road Traffic Accident Severity Using Transformer Learning and Explainable AI Technique</title><author>Aboulola, Omar Ibrahim ; Alabdulqader, Ebtisam Abdullah ; AlArfaj, Aisha Ahmed ; Alsubai, Shtwai ; Kim, Tai-Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-30e8703958c6b6f27652bae075713e2f7f6950eb34fe5a9f8bb08ba82429d7a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accident prediction</topic><topic>Accidents</topic><topic>Artificial neural networks</topic><topic>Biological system modeling</topic><topic>Deep learning</topic><topic>Explainable AI</topic><topic>explainable AI (XAI)</topic><topic>Explainable artificial intelligence</topic><topic>Fatalities</topic><topic>Injuries</topic><topic>Intelligent transportation system</topic><topic>Intelligent transportation systems</topic><topic>Machine learning</topic><topic>MobileNet</topic><topic>Multilayer perceptrons</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>road accidents severity</topic><topic>Road traffic</topic><topic>Roads</topic><topic>Traffic accidents</topic><topic>Traffic accidents & safety</topic><topic>Transfer learning</topic><topic>Vehicle safety</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aboulola, Omar Ibrahim</creatorcontrib><creatorcontrib>Alabdulqader, Ebtisam Abdullah</creatorcontrib><creatorcontrib>AlArfaj, Aisha Ahmed</creatorcontrib><creatorcontrib>Alsubai, Shtwai</creatorcontrib><creatorcontrib>Kim, Tai-Hoon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aboulola, Omar Ibrahim</au><au>Alabdulqader, Ebtisam Abdullah</au><au>AlArfaj, Aisha Ahmed</au><au>Alsubai, Shtwai</au><au>Kim, Tai-Hoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Automated Approach for Predicting Road Traffic Accident Severity Using Transformer Learning and Explainable AI Technique</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>61062</spage><epage>61072</epage><pages>61062-61072</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Traffic accidents continue to be a significant cause of fatalities, injuries, and considerable disruptions on our highways. Understanding the underlying factors behind these incidents is crucial for improving safety on road networks. While recent studies have highlighted the usefulness of predictive modeling in uncovering factors leading to accidents, there remains a gap in explaining the inner workings of complex machine learning and deep learning models and how various features influence accident prediction. This lack of transparency may lead to these models being perceived as black boxes, potentially undermining trust in their findings among stakeholders. The primary aim of this research is to develop predictive models using diverse transfer learning techniques and shed light on the most influential factors using Shapley values. In predicting injury severity in accidents, we employ Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Residual Networks (ResNET), EfficientNetB4, InceptionV3, Extreme Inception (Xception), Visual Geometry Group (VGG19), AlexNet, and MobileNet. Among these models, MobileNet emerges with the highest accuracy at 0.9817. Furthermore, by comprehending how different features impact accident prediction models, researchers can deepen their understanding of the factors contributing to accidents and devise more effective interventions for their prevention.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3380895</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8539-5560</orcidid><orcidid>https://orcid.org/0000-0003-3928-2562</orcidid><orcidid>https://orcid.org/0000-0002-6584-7400</orcidid><orcidid>https://orcid.org/0000-0003-0117-8102</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.61062-61072 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10477984 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accident prediction Accidents Artificial neural networks Biological system modeling Deep learning Explainable AI explainable AI (XAI) Explainable artificial intelligence Fatalities Injuries Intelligent transportation system Intelligent transportation systems Machine learning MobileNet Multilayer perceptrons Prediction models Predictive models road accidents severity Road traffic Roads Traffic accidents Traffic accidents & safety Transfer learning Vehicle safety |
title | An Automated Approach for Predicting Road Traffic Accident Severity Using Transformer Learning and Explainable AI Technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A19%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Automated%20Approach%20for%20Predicting%20Road%20Traffic%20Accident%20Severity%20Using%20Transformer%20Learning%20and%20Explainable%20AI%20Technique&rft.jtitle=IEEE%20access&rft.au=Aboulola,%20Omar%20Ibrahim&rft.date=2024&rft.volume=12&rft.spage=61062&rft.epage=61072&rft.pages=61062-61072&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3380895&rft_dat=%3Cproquest_ieee_%3E3050303799%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050303799&rft_id=info:pmid/&rft_ieee_id=10477984&rft_doaj_id=oai_doaj_org_article_9ca032d01b974ca38efbf8894b06eeb9&rfr_iscdi=true |