Distributed-Optimization With Centralized-Refining for Efficient Resource Allocation in Future Wireless Networks

Future wireless networks are expected to support diverse Internet of Things (IoT) applications under dynamic network conditions through effective resource allocation. However, the growing complexity of underlying optimization problems for resource allocation has brought many challenges to traditiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2024-08, Vol.72 (8), p.4829-4843
Hauptverfasser: Bai, Jiyang, Wang, Xianbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4843
container_issue 8
container_start_page 4829
container_title IEEE transactions on communications
container_volume 72
creator Bai, Jiyang
Wang, Xianbin
description Future wireless networks are expected to support diverse Internet of Things (IoT) applications under dynamic network conditions through effective resource allocation. However, the growing complexity of underlying optimization problems for resource allocation has brought many challenges to traditional centralized network operations due to inherent computational constraints. To overcome these challenges, this paper proposes a Distributed-Optimization with Centralized-Refining (DO-CR) mechanism to achieve more efficient resource allocation by engaging both access point and all devices. Specifically, the new DO-CR mechanism first utilizes the distributed processing capacity of all devices, allowing them to optimize their own resource allocation schemes through a new resource reservation and reporting technique. Then a centralized optimizer generates a graph of resource trading topology based on individual optimization results and achieves the Pareto optimal solution by the graph-based algorithm. This Pareto optimal solution simplifies the overall optimization problem and enables the central optimizer to solve it with smaller feasible regions. The analysis presents that the DO-CR mechanism's performance is bounded by Pareto optimality as lower limit and global optimality as upper limit. Simulation results demonstrate that the proposed DO-CR mechanism significantly reduces processing time on the centralized optimizer while maintaining near-optimal utility performance compared to conventional optimization methods.
doi_str_mv 10.1109/TCOMM.2024.3379368
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10475380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10475380</ieee_id><sourcerecordid>3094515335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-78b95e4feab5cdf60761d8ad8a6dd49cd5ee8f53f14f1d71c3a6d698b075ed343</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYMoOKd_QHwo-NyZNEmTPo66qbA5GBMfS9vcaGbXziRF3K83sz4IF-7DOd-5l4PQNcETQnB2t8lXy-UkwQmbUCoymsoTNCKcyxhLLk7RCOMMx6kQ8hxdOLfFGDNM6Qjt743z1lS9BxWv9t7szKH0pmujV-Pfoxxab8vGHIK6Bm1a075FurPRTGtTm6BGa3Bdb2uIpk3T1QNr2mje-95CSLHQgHPRM_ivzn64S3Smy8bB1d8eo5f5bJM_xovVw1M-XcR1woSPhawyDkxDWfFa6RSLlChZhkmVYlmtOIDUnGrCNFGC1DQIaSYrLDgoyugY3Q65e9t99uB8sQ1vtuFkQXHGOOGU8uBKBldtO-cs6GJvza603wXBxbHZ4rfZ4ths8ddsgG4GyADAP4AJTiWmP8sSeCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094515335</pqid></control><display><type>article</type><title>Distributed-Optimization With Centralized-Refining for Efficient Resource Allocation in Future Wireless Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Bai, Jiyang ; Wang, Xianbin</creator><creatorcontrib>Bai, Jiyang ; Wang, Xianbin</creatorcontrib><description>Future wireless networks are expected to support diverse Internet of Things (IoT) applications under dynamic network conditions through effective resource allocation. However, the growing complexity of underlying optimization problems for resource allocation has brought many challenges to traditional centralized network operations due to inherent computational constraints. To overcome these challenges, this paper proposes a Distributed-Optimization with Centralized-Refining (DO-CR) mechanism to achieve more efficient resource allocation by engaging both access point and all devices. Specifically, the new DO-CR mechanism first utilizes the distributed processing capacity of all devices, allowing them to optimize their own resource allocation schemes through a new resource reservation and reporting technique. Then a centralized optimizer generates a graph of resource trading topology based on individual optimization results and achieves the Pareto optimal solution by the graph-based algorithm. This Pareto optimal solution simplifies the overall optimization problem and enables the central optimizer to solve it with smaller feasible regions. The analysis presents that the DO-CR mechanism's performance is bounded by Pareto optimality as lower limit and global optimality as upper limit. Simulation results demonstrate that the proposed DO-CR mechanism significantly reduces processing time on the centralized optimizer while maintaining near-optimal utility performance compared to conventional optimization methods.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2024.3379368</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Distributed optimization ; Distributed processing ; game theory ; graph theory ; Internet of Things ; Optimization ; Pareto optimization ; Pareto optimum ; Real-time systems ; Resource allocation ; Resource management ; Topology optimization ; Wi-Fi 7 ; Wireless networks</subject><ispartof>IEEE transactions on communications, 2024-08, Vol.72 (8), p.4829-4843</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-78b95e4feab5cdf60761d8ad8a6dd49cd5ee8f53f14f1d71c3a6d698b075ed343</cites><orcidid>0000-0003-4890-0748 ; 0000-0002-9481-662X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10475380$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10475380$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bai, Jiyang</creatorcontrib><creatorcontrib>Wang, Xianbin</creatorcontrib><title>Distributed-Optimization With Centralized-Refining for Efficient Resource Allocation in Future Wireless Networks</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>Future wireless networks are expected to support diverse Internet of Things (IoT) applications under dynamic network conditions through effective resource allocation. However, the growing complexity of underlying optimization problems for resource allocation has brought many challenges to traditional centralized network operations due to inherent computational constraints. To overcome these challenges, this paper proposes a Distributed-Optimization with Centralized-Refining (DO-CR) mechanism to achieve more efficient resource allocation by engaging both access point and all devices. Specifically, the new DO-CR mechanism first utilizes the distributed processing capacity of all devices, allowing them to optimize their own resource allocation schemes through a new resource reservation and reporting technique. Then a centralized optimizer generates a graph of resource trading topology based on individual optimization results and achieves the Pareto optimal solution by the graph-based algorithm. This Pareto optimal solution simplifies the overall optimization problem and enables the central optimizer to solve it with smaller feasible regions. The analysis presents that the DO-CR mechanism's performance is bounded by Pareto optimality as lower limit and global optimality as upper limit. Simulation results demonstrate that the proposed DO-CR mechanism significantly reduces processing time on the centralized optimizer while maintaining near-optimal utility performance compared to conventional optimization methods.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Distributed optimization</subject><subject>Distributed processing</subject><subject>game theory</subject><subject>graph theory</subject><subject>Internet of Things</subject><subject>Optimization</subject><subject>Pareto optimization</subject><subject>Pareto optimum</subject><subject>Real-time systems</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Topology optimization</subject><subject>Wi-Fi 7</subject><subject>Wireless networks</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFFLwzAUhYMoOKd_QHwo-NyZNEmTPo66qbA5GBMfS9vcaGbXziRF3K83sz4IF-7DOd-5l4PQNcETQnB2t8lXy-UkwQmbUCoymsoTNCKcyxhLLk7RCOMMx6kQ8hxdOLfFGDNM6Qjt743z1lS9BxWv9t7szKH0pmujV-Pfoxxab8vGHIK6Bm1a075FurPRTGtTm6BGa3Bdb2uIpk3T1QNr2mje-95CSLHQgHPRM_ivzn64S3Smy8bB1d8eo5f5bJM_xovVw1M-XcR1woSPhawyDkxDWfFa6RSLlChZhkmVYlmtOIDUnGrCNFGC1DQIaSYrLDgoyugY3Q65e9t99uB8sQ1vtuFkQXHGOOGU8uBKBldtO-cs6GJvza603wXBxbHZ4rfZ4ths8ddsgG4GyADAP4AJTiWmP8sSeCA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Bai, Jiyang</creator><creator>Wang, Xianbin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4890-0748</orcidid><orcidid>https://orcid.org/0000-0002-9481-662X</orcidid></search><sort><creationdate>20240801</creationdate><title>Distributed-Optimization With Centralized-Refining for Efficient Resource Allocation in Future Wireless Networks</title><author>Bai, Jiyang ; Wang, Xianbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-78b95e4feab5cdf60761d8ad8a6dd49cd5ee8f53f14f1d71c3a6d698b075ed343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Distributed optimization</topic><topic>Distributed processing</topic><topic>game theory</topic><topic>graph theory</topic><topic>Internet of Things</topic><topic>Optimization</topic><topic>Pareto optimization</topic><topic>Pareto optimum</topic><topic>Real-time systems</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Topology optimization</topic><topic>Wi-Fi 7</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Jiyang</creatorcontrib><creatorcontrib>Wang, Xianbin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bai, Jiyang</au><au>Wang, Xianbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed-Optimization With Centralized-Refining for Efficient Resource Allocation in Future Wireless Networks</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>72</volume><issue>8</issue><spage>4829</spage><epage>4843</epage><pages>4829-4843</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>Future wireless networks are expected to support diverse Internet of Things (IoT) applications under dynamic network conditions through effective resource allocation. However, the growing complexity of underlying optimization problems for resource allocation has brought many challenges to traditional centralized network operations due to inherent computational constraints. To overcome these challenges, this paper proposes a Distributed-Optimization with Centralized-Refining (DO-CR) mechanism to achieve more efficient resource allocation by engaging both access point and all devices. Specifically, the new DO-CR mechanism first utilizes the distributed processing capacity of all devices, allowing them to optimize their own resource allocation schemes through a new resource reservation and reporting technique. Then a centralized optimizer generates a graph of resource trading topology based on individual optimization results and achieves the Pareto optimal solution by the graph-based algorithm. This Pareto optimal solution simplifies the overall optimization problem and enables the central optimizer to solve it with smaller feasible regions. The analysis presents that the DO-CR mechanism's performance is bounded by Pareto optimality as lower limit and global optimality as upper limit. Simulation results demonstrate that the proposed DO-CR mechanism significantly reduces processing time on the centralized optimizer while maintaining near-optimal utility performance compared to conventional optimization methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2024.3379368</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4890-0748</orcidid><orcidid>https://orcid.org/0000-0002-9481-662X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2024-08, Vol.72 (8), p.4829-4843
issn 0090-6778
1558-0857
language eng
recordid cdi_ieee_primary_10475380
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial intelligence
Distributed optimization
Distributed processing
game theory
graph theory
Internet of Things
Optimization
Pareto optimization
Pareto optimum
Real-time systems
Resource allocation
Resource management
Topology optimization
Wi-Fi 7
Wireless networks
title Distributed-Optimization With Centralized-Refining for Efficient Resource Allocation in Future Wireless Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A03%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed-Optimization%20With%20Centralized-Refining%20for%20Efficient%20Resource%20Allocation%20in%20Future%20Wireless%20Networks&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Bai,%20Jiyang&rft.date=2024-08-01&rft.volume=72&rft.issue=8&rft.spage=4829&rft.epage=4843&rft.pages=4829-4843&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2024.3379368&rft_dat=%3Cproquest_RIE%3E3094515335%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3094515335&rft_id=info:pmid/&rft_ieee_id=10475380&rfr_iscdi=true