An Integrated FPGA Accelerator for Deep Learning-Based 2D/3D Path Planning
Path planning is a crucial component for realizing the autonomy of mobile robots. However, due to limited computational resources on mobile robots, it remains challenging to deploy state-of-the-art methods and achieve real-time performance. To address this, we propose P3Net (PointNet-based Path Plan...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computers 2024-06, Vol.73 (6), p.1442-1456 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1456 |
---|---|
container_issue | 6 |
container_start_page | 1442 |
container_title | IEEE transactions on computers |
container_volume | 73 |
creator | Sugiura, Keisuke Matsutani, Hiroki |
description | Path planning is a crucial component for realizing the autonomy of mobile robots. However, due to limited computational resources on mobile robots, it remains challenging to deploy state-of-the-art methods and achieve real-time performance. To address this, we propose P3Net (PointNet-based Path Planning Networks), a lightweight deep-learning-based method for 2D/3D path planning, and design an IP core (P3NetCore) targeting FPGA SoCs (Xilinx ZCU104). P3Net improves the algorithm and model architecture of the recently-proposed MPNet. P3Net employs an encoder with a PointNet backbone and a lightweight planning network in order to extract robust point cloud features and sample path points from a promising region. P3NetCore is comprised of the fully-pipelined point cloud encoder, batched bidirectional path planner, and parallel collision checker, to cover most part of the algorithm. On the 2D (3D) datasets, P3Net with the IP core runs 30.52-186.36x and 7.68-143.62x (15.69-93.26x and 5.30-45.27x) faster than ARM Cortex CPU and Nvidia Jetson while only consuming 0.255W (0.809W), and is up to 1278.14x (455.34x) power-efficient than the workstation. P3Net improves the success rate by up to 28.2% and plans a near-optimal path, leading to a significantly better tradeoff between computation and solution quality than MPNet and the state-of-the-art sampling-based methods. |
doi_str_mv | 10.1109/TC.2024.3377895 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10474486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10474486</ieee_id><sourcerecordid>3053296997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-a2fa44e3ec3c51d8c8896abb0ef193ad4cafa066ae6b9feb39e77ade3ddfbe7d3</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhjdGExE9e_HQxHNhv7d7rEUQ00QOeN5Mt7MIwRa35eC_twQOHiaTzDzvTPIQ8sjohDFqp-tiwimXEyGMyay6IiOmlEmtVfqajChlWWqFpLfkrut2lFLNqR2R97xJlk2Pmwg91sl8tciT3Hvc4zBoYxKGmiEekhIhNttmk75AN4B8NhWzZAX9V7LaQ3Pa3JObAPsOHy59TD7nr-viLS0_FssiL1PPM9WnwANIiQK98IrVmc8yq6GqKAZmBdTSQwCqNaCubMBKWDQGahR1HSo0tRiT5_PdQ2x_jtj1btceYzO8dIIqwa221gzU9Ez52HZdxOAOcfsN8dcx6k7C3LpwJ2HuImxIPJ0TW0T8R0sjZabFH-YAZi4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053296997</pqid></control><display><type>article</type><title>An Integrated FPGA Accelerator for Deep Learning-Based 2D/3D Path Planning</title><source>IEEE Electronic Library (IEL)</source><creator>Sugiura, Keisuke ; Matsutani, Hiroki</creator><creatorcontrib>Sugiura, Keisuke ; Matsutani, Hiroki</creatorcontrib><description>Path planning is a crucial component for realizing the autonomy of mobile robots. However, due to limited computational resources on mobile robots, it remains challenging to deploy state-of-the-art methods and achieve real-time performance. To address this, we propose P3Net (PointNet-based Path Planning Networks), a lightweight deep-learning-based method for 2D/3D path planning, and design an IP core (P3NetCore) targeting FPGA SoCs (Xilinx ZCU104). P3Net improves the algorithm and model architecture of the recently-proposed MPNet. P3Net employs an encoder with a PointNet backbone and a lightweight planning network in order to extract robust point cloud features and sample path points from a promising region. P3NetCore is comprised of the fully-pipelined point cloud encoder, batched bidirectional path planner, and parallel collision checker, to cover most part of the algorithm. On the 2D (3D) datasets, P3Net with the IP core runs 30.52-186.36x and 7.68-143.62x (15.69-93.26x and 5.30-45.27x) faster than ARM Cortex CPU and Nvidia Jetson while only consuming 0.255W (0.809W), and is up to 1278.14x (455.34x) power-efficient than the workstation. P3Net improves the success rate by up to 28.2% and plans a near-optimal path, leading to a significantly better tradeoff between computation and solution quality than MPNet and the state-of-the-art sampling-based methods.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2024.3377895</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Coders ; Deep learning ; Feature extraction ; Field programmable gate arrays ; FPGA ; IP (Internet Protocol) ; Lightweight ; neural path planning ; Parallel processing ; Path planning ; Planning ; Point cloud compression ; point cloud processing ; PointNet ; Robots ; State of the art ; Weight reduction</subject><ispartof>IEEE transactions on computers, 2024-06, Vol.73 (6), p.1442-1456</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c285t-a2fa44e3ec3c51d8c8896abb0ef193ad4cafa066ae6b9feb39e77ade3ddfbe7d3</cites><orcidid>0000-0001-8534-2381 ; 0000-0001-9578-3842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10474486$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Sugiura, Keisuke</creatorcontrib><creatorcontrib>Matsutani, Hiroki</creatorcontrib><title>An Integrated FPGA Accelerator for Deep Learning-Based 2D/3D Path Planning</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>Path planning is a crucial component for realizing the autonomy of mobile robots. However, due to limited computational resources on mobile robots, it remains challenging to deploy state-of-the-art methods and achieve real-time performance. To address this, we propose P3Net (PointNet-based Path Planning Networks), a lightweight deep-learning-based method for 2D/3D path planning, and design an IP core (P3NetCore) targeting FPGA SoCs (Xilinx ZCU104). P3Net improves the algorithm and model architecture of the recently-proposed MPNet. P3Net employs an encoder with a PointNet backbone and a lightweight planning network in order to extract robust point cloud features and sample path points from a promising region. P3NetCore is comprised of the fully-pipelined point cloud encoder, batched bidirectional path planner, and parallel collision checker, to cover most part of the algorithm. On the 2D (3D) datasets, P3Net with the IP core runs 30.52-186.36x and 7.68-143.62x (15.69-93.26x and 5.30-45.27x) faster than ARM Cortex CPU and Nvidia Jetson while only consuming 0.255W (0.809W), and is up to 1278.14x (455.34x) power-efficient than the workstation. P3Net improves the success rate by up to 28.2% and plans a near-optimal path, leading to a significantly better tradeoff between computation and solution quality than MPNet and the state-of-the-art sampling-based methods.</description><subject>Algorithms</subject><subject>Coders</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Field programmable gate arrays</subject><subject>FPGA</subject><subject>IP (Internet Protocol)</subject><subject>Lightweight</subject><subject>neural path planning</subject><subject>Parallel processing</subject><subject>Path planning</subject><subject>Planning</subject><subject>Point cloud compression</subject><subject>point cloud processing</subject><subject>PointNet</subject><subject>Robots</subject><subject>State of the art</subject><subject>Weight reduction</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE1PwkAQhjdGExE9e_HQxHNhv7d7rEUQ00QOeN5Mt7MIwRa35eC_twQOHiaTzDzvTPIQ8sjohDFqp-tiwimXEyGMyay6IiOmlEmtVfqajChlWWqFpLfkrut2lFLNqR2R97xJlk2Pmwg91sl8tciT3Hvc4zBoYxKGmiEekhIhNttmk75AN4B8NhWzZAX9V7LaQ3Pa3JObAPsOHy59TD7nr-viLS0_FssiL1PPM9WnwANIiQK98IrVmc8yq6GqKAZmBdTSQwCqNaCubMBKWDQGahR1HSo0tRiT5_PdQ2x_jtj1btceYzO8dIIqwa221gzU9Ez52HZdxOAOcfsN8dcx6k7C3LpwJ2HuImxIPJ0TW0T8R0sjZabFH-YAZi4</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Sugiura, Keisuke</creator><creator>Matsutani, Hiroki</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8534-2381</orcidid><orcidid>https://orcid.org/0000-0001-9578-3842</orcidid></search><sort><creationdate>20240601</creationdate><title>An Integrated FPGA Accelerator for Deep Learning-Based 2D/3D Path Planning</title><author>Sugiura, Keisuke ; Matsutani, Hiroki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-a2fa44e3ec3c51d8c8896abb0ef193ad4cafa066ae6b9feb39e77ade3ddfbe7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Coders</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Field programmable gate arrays</topic><topic>FPGA</topic><topic>IP (Internet Protocol)</topic><topic>Lightweight</topic><topic>neural path planning</topic><topic>Parallel processing</topic><topic>Path planning</topic><topic>Planning</topic><topic>Point cloud compression</topic><topic>point cloud processing</topic><topic>PointNet</topic><topic>Robots</topic><topic>State of the art</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugiura, Keisuke</creatorcontrib><creatorcontrib>Matsutani, Hiroki</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugiura, Keisuke</au><au>Matsutani, Hiroki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Integrated FPGA Accelerator for Deep Learning-Based 2D/3D Path Planning</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>73</volume><issue>6</issue><spage>1442</spage><epage>1456</epage><pages>1442-1456</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>Path planning is a crucial component for realizing the autonomy of mobile robots. However, due to limited computational resources on mobile robots, it remains challenging to deploy state-of-the-art methods and achieve real-time performance. To address this, we propose P3Net (PointNet-based Path Planning Networks), a lightweight deep-learning-based method for 2D/3D path planning, and design an IP core (P3NetCore) targeting FPGA SoCs (Xilinx ZCU104). P3Net improves the algorithm and model architecture of the recently-proposed MPNet. P3Net employs an encoder with a PointNet backbone and a lightweight planning network in order to extract robust point cloud features and sample path points from a promising region. P3NetCore is comprised of the fully-pipelined point cloud encoder, batched bidirectional path planner, and parallel collision checker, to cover most part of the algorithm. On the 2D (3D) datasets, P3Net with the IP core runs 30.52-186.36x and 7.68-143.62x (15.69-93.26x and 5.30-45.27x) faster than ARM Cortex CPU and Nvidia Jetson while only consuming 0.255W (0.809W), and is up to 1278.14x (455.34x) power-efficient than the workstation. P3Net improves the success rate by up to 28.2% and plans a near-optimal path, leading to a significantly better tradeoff between computation and solution quality than MPNet and the state-of-the-art sampling-based methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TC.2024.3377895</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8534-2381</orcidid><orcidid>https://orcid.org/0000-0001-9578-3842</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9340 |
ispartof | IEEE transactions on computers, 2024-06, Vol.73 (6), p.1442-1456 |
issn | 0018-9340 1557-9956 |
language | eng |
recordid | cdi_ieee_primary_10474486 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Coders Deep learning Feature extraction Field programmable gate arrays FPGA IP (Internet Protocol) Lightweight neural path planning Parallel processing Path planning Planning Point cloud compression point cloud processing PointNet Robots State of the art Weight reduction |
title | An Integrated FPGA Accelerator for Deep Learning-Based 2D/3D Path Planning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A49%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Integrated%20FPGA%20Accelerator%20for%20Deep%20Learning-Based%202D/3D%20Path%20Planning&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Sugiura,%20Keisuke&rft.date=2024-06-01&rft.volume=73&rft.issue=6&rft.spage=1442&rft.epage=1456&rft.pages=1442-1456&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2024.3377895&rft_dat=%3Cproquest_ieee_%3E3053296997%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053296997&rft_id=info:pmid/&rft_ieee_id=10474486&rfr_iscdi=true |