An Improved SAC-Based Deep Reinforcement Learning Framework for Collaborative Pushing and Grasping in Underwater Environments

Autonomous grasping is a fundamental task for underwater robots, but direct grasping for tightly stacked objects will lead to collisions and grasp failures, which requires pushing actions to separate the target object and increase grasp success (GS) rates. Hence, this article proposes a novel approa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-14
Hauptverfasser: Gao, Jian, Li, Yufeng, Chen, Yimin, He, Yaozhen, Guo, Jingwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 73
creator Gao, Jian
Li, Yufeng
Chen, Yimin
He, Yaozhen
Guo, Jingwei
description Autonomous grasping is a fundamental task for underwater robots, but direct grasping for tightly stacked objects will lead to collisions and grasp failures, which requires pushing actions to separate the target object and increase grasp success (GS) rates. Hence, this article proposes a novel approach by employing an improved soft actor-critic (SAC) algorithm within a deep reinforcement learning (RL) framework for achieving collaborative pushing and grasping actions. The developed scheme employs an end-to-end control strategy that maps input images to actions. Specifically, an attention mechanism is introduced in the visual perception module to extract the necessary features for pushing and grasping actions to enhance the training strategy. Moreover, a novel pushing reward function is designed, comprising a per-object distribution function around the target and a global object distribution assessment network named PA-Net. Furthermore, an enhanced experience replay strategy is introduced to address the sparsity issue of grasp action rewards. Finally, a training environment for underwater manipulators is established, in which variations in light, water flow noise, and pressure effects are incorporated to simulate underwater work conditions more realistically. The simulation and real-world experiments demonstrate that the proposed learning strategy efficiently separates target objects and avoids inefficient pushing actions, achieving a significantly higher GS rate.
doi_str_mv 10.1109/TIM.2024.3379048
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10474399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10474399</ieee_id><sourcerecordid>3015043157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-a831bcde811ce85ce141a1f32d1d48cb66ce92db39b70537adb094fd971567343</originalsourceid><addsrcrecordid>eNpNkDFPwzAQhS0EEqWwMzBYYk6xYzuOx1LaUqkIBO0cOfEFAo0d7LQVA_-dRO3AdHe6773TPYSuKRlRStTdavE0iknMR4xJRXh6ggZUCBmpJIlP0YAQmkaKi-QcXYTwSQiRCZcD9Du2eFE33u3A4LfxJLrXoeseABr8CpUtnS-gBtviJWhvK_uOZ17XsHf-C3dLPHGbjc6d1221A_yyDR89o63Bc69D0w-VxWtrwO91Cx5P7a7yzvae4RKdlXoT4OpYh2g9m64mj9Hyeb6YjJdREXPRRjplNC8MpJQWkIoCKKealiw21PC0yJOkABWbnKlcEsGkNjlRvDRKUpFIxtkQ3R58u0e_txDa7NNtve1OZoxQQTijQnYUOVCFdyF4KLPGV7X2PxklWR9y1oWc9SFnx5A7yc1BUgHAP5xLzpRif-XwebU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3015043157</pqid></control><display><type>article</type><title>An Improved SAC-Based Deep Reinforcement Learning Framework for Collaborative Pushing and Grasping in Underwater Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Gao, Jian ; Li, Yufeng ; Chen, Yimin ; He, Yaozhen ; Guo, Jingwei</creator><creatorcontrib>Gao, Jian ; Li, Yufeng ; Chen, Yimin ; He, Yaozhen ; Guo, Jingwei</creatorcontrib><description>Autonomous grasping is a fundamental task for underwater robots, but direct grasping for tightly stacked objects will lead to collisions and grasp failures, which requires pushing actions to separate the target object and increase grasp success (GS) rates. Hence, this article proposes a novel approach by employing an improved soft actor-critic (SAC) algorithm within a deep reinforcement learning (RL) framework for achieving collaborative pushing and grasping actions. The developed scheme employs an end-to-end control strategy that maps input images to actions. Specifically, an attention mechanism is introduced in the visual perception module to extract the necessary features for pushing and grasping actions to enhance the training strategy. Moreover, a novel pushing reward function is designed, comprising a per-object distribution function around the target and a global object distribution assessment network named PA-Net. Furthermore, an enhanced experience replay strategy is introduced to address the sparsity issue of grasp action rewards. Finally, a training environment for underwater manipulators is established, in which variations in light, water flow noise, and pressure effects are incorporated to simulate underwater work conditions more realistically. The simulation and real-world experiments demonstrate that the proposed learning strategy efficiently separates target objects and avoids inefficient pushing actions, achieving a significantly higher GS rate.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3379048</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Attention mechanism ; Cameras ; Collaboration ; collaborative actions ; Deep learning ; Deep reinforcement learning ; deep reinforcement learning (RL) ; Distribution functions ; Feature extraction ; Grasping ; Grasping (robotics) ; Machine learning ; Manipulators ; Pressure effects ; Pushing ; pushing–grasping ; reward function ; Task analysis ; Training ; underwater manipulator ; Underwater robots ; Visual perception ; Water flow</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-a831bcde811ce85ce141a1f32d1d48cb66ce92db39b70537adb094fd971567343</cites><orcidid>0000-0002-1181-4531 ; 0000-0003-0634-6734 ; 0000-0003-1562-1443 ; 0000-0002-4671-8371 ; 0000-0002-5944-4146</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10474399$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,4025,27928,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10474399$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao, Jian</creatorcontrib><creatorcontrib>Li, Yufeng</creatorcontrib><creatorcontrib>Chen, Yimin</creatorcontrib><creatorcontrib>He, Yaozhen</creatorcontrib><creatorcontrib>Guo, Jingwei</creatorcontrib><title>An Improved SAC-Based Deep Reinforcement Learning Framework for Collaborative Pushing and Grasping in Underwater Environments</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Autonomous grasping is a fundamental task for underwater robots, but direct grasping for tightly stacked objects will lead to collisions and grasp failures, which requires pushing actions to separate the target object and increase grasp success (GS) rates. Hence, this article proposes a novel approach by employing an improved soft actor-critic (SAC) algorithm within a deep reinforcement learning (RL) framework for achieving collaborative pushing and grasping actions. The developed scheme employs an end-to-end control strategy that maps input images to actions. Specifically, an attention mechanism is introduced in the visual perception module to extract the necessary features for pushing and grasping actions to enhance the training strategy. Moreover, a novel pushing reward function is designed, comprising a per-object distribution function around the target and a global object distribution assessment network named PA-Net. Furthermore, an enhanced experience replay strategy is introduced to address the sparsity issue of grasp action rewards. Finally, a training environment for underwater manipulators is established, in which variations in light, water flow noise, and pressure effects are incorporated to simulate underwater work conditions more realistically. The simulation and real-world experiments demonstrate that the proposed learning strategy efficiently separates target objects and avoids inefficient pushing actions, achieving a significantly higher GS rate.</description><subject>Algorithms</subject><subject>Attention mechanism</subject><subject>Cameras</subject><subject>Collaboration</subject><subject>collaborative actions</subject><subject>Deep learning</subject><subject>Deep reinforcement learning</subject><subject>deep reinforcement learning (RL)</subject><subject>Distribution functions</subject><subject>Feature extraction</subject><subject>Grasping</subject><subject>Grasping (robotics)</subject><subject>Machine learning</subject><subject>Manipulators</subject><subject>Pressure effects</subject><subject>Pushing</subject><subject>pushing–grasping</subject><subject>reward function</subject><subject>Task analysis</subject><subject>Training</subject><subject>underwater manipulator</subject><subject>Underwater robots</subject><subject>Visual perception</subject><subject>Water flow</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDFPwzAQhS0EEqWwMzBYYk6xYzuOx1LaUqkIBO0cOfEFAo0d7LQVA_-dRO3AdHe6773TPYSuKRlRStTdavE0iknMR4xJRXh6ggZUCBmpJIlP0YAQmkaKi-QcXYTwSQiRCZcD9Du2eFE33u3A4LfxJLrXoeseABr8CpUtnS-gBtviJWhvK_uOZ17XsHf-C3dLPHGbjc6d1221A_yyDR89o63Bc69D0w-VxWtrwO91Cx5P7a7yzvae4RKdlXoT4OpYh2g9m64mj9Hyeb6YjJdREXPRRjplNC8MpJQWkIoCKKealiw21PC0yJOkABWbnKlcEsGkNjlRvDRKUpFIxtkQ3R58u0e_txDa7NNtve1OZoxQQTijQnYUOVCFdyF4KLPGV7X2PxklWR9y1oWc9SFnx5A7yc1BUgHAP5xLzpRif-XwebU</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Gao, Jian</creator><creator>Li, Yufeng</creator><creator>Chen, Yimin</creator><creator>He, Yaozhen</creator><creator>Guo, Jingwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1181-4531</orcidid><orcidid>https://orcid.org/0000-0003-0634-6734</orcidid><orcidid>https://orcid.org/0000-0003-1562-1443</orcidid><orcidid>https://orcid.org/0000-0002-4671-8371</orcidid><orcidid>https://orcid.org/0000-0002-5944-4146</orcidid></search><sort><creationdate>2024</creationdate><title>An Improved SAC-Based Deep Reinforcement Learning Framework for Collaborative Pushing and Grasping in Underwater Environments</title><author>Gao, Jian ; Li, Yufeng ; Chen, Yimin ; He, Yaozhen ; Guo, Jingwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-a831bcde811ce85ce141a1f32d1d48cb66ce92db39b70537adb094fd971567343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Attention mechanism</topic><topic>Cameras</topic><topic>Collaboration</topic><topic>collaborative actions</topic><topic>Deep learning</topic><topic>Deep reinforcement learning</topic><topic>deep reinforcement learning (RL)</topic><topic>Distribution functions</topic><topic>Feature extraction</topic><topic>Grasping</topic><topic>Grasping (robotics)</topic><topic>Machine learning</topic><topic>Manipulators</topic><topic>Pressure effects</topic><topic>Pushing</topic><topic>pushing–grasping</topic><topic>reward function</topic><topic>Task analysis</topic><topic>Training</topic><topic>underwater manipulator</topic><topic>Underwater robots</topic><topic>Visual perception</topic><topic>Water flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Jian</creatorcontrib><creatorcontrib>Li, Yufeng</creatorcontrib><creatorcontrib>Chen, Yimin</creatorcontrib><creatorcontrib>He, Yaozhen</creatorcontrib><creatorcontrib>Guo, Jingwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao, Jian</au><au>Li, Yufeng</au><au>Chen, Yimin</au><au>He, Yaozhen</au><au>Guo, Jingwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved SAC-Based Deep Reinforcement Learning Framework for Collaborative Pushing and Grasping in Underwater Environments</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Autonomous grasping is a fundamental task for underwater robots, but direct grasping for tightly stacked objects will lead to collisions and grasp failures, which requires pushing actions to separate the target object and increase grasp success (GS) rates. Hence, this article proposes a novel approach by employing an improved soft actor-critic (SAC) algorithm within a deep reinforcement learning (RL) framework for achieving collaborative pushing and grasping actions. The developed scheme employs an end-to-end control strategy that maps input images to actions. Specifically, an attention mechanism is introduced in the visual perception module to extract the necessary features for pushing and grasping actions to enhance the training strategy. Moreover, a novel pushing reward function is designed, comprising a per-object distribution function around the target and a global object distribution assessment network named PA-Net. Furthermore, an enhanced experience replay strategy is introduced to address the sparsity issue of grasp action rewards. Finally, a training environment for underwater manipulators is established, in which variations in light, water flow noise, and pressure effects are incorporated to simulate underwater work conditions more realistically. The simulation and real-world experiments demonstrate that the proposed learning strategy efficiently separates target objects and avoids inefficient pushing actions, achieving a significantly higher GS rate.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2024.3379048</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1181-4531</orcidid><orcidid>https://orcid.org/0000-0003-0634-6734</orcidid><orcidid>https://orcid.org/0000-0003-1562-1443</orcidid><orcidid>https://orcid.org/0000-0002-4671-8371</orcidid><orcidid>https://orcid.org/0000-0002-5944-4146</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-14
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_10474399
source IEEE Electronic Library (IEL)
subjects Algorithms
Attention mechanism
Cameras
Collaboration
collaborative actions
Deep learning
Deep reinforcement learning
deep reinforcement learning (RL)
Distribution functions
Feature extraction
Grasping
Grasping (robotics)
Machine learning
Manipulators
Pressure effects
Pushing
pushing–grasping
reward function
Task analysis
Training
underwater manipulator
Underwater robots
Visual perception
Water flow
title An Improved SAC-Based Deep Reinforcement Learning Framework for Collaborative Pushing and Grasping in Underwater Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T14%3A19%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20SAC-Based%20Deep%20Reinforcement%20Learning%20Framework%20for%20Collaborative%20Pushing%20and%20Grasping%20in%20Underwater%20Environments&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Gao,%20Jian&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3379048&rft_dat=%3Cproquest_RIE%3E3015043157%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3015043157&rft_id=info:pmid/&rft_ieee_id=10474399&rfr_iscdi=true