Toward Indoor Simulations of OPV Cells for Visible Light Communication and Energy Harvesting
The massive deployment of IoT connected devices brings up different modern problems, such as radiofrequency spectrum saturation and energetic requirements. Organic photovoltaics are good candidates for indoor energy harvesting and data reception in a simultaneous lightwave information and power tran...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.41027-41041 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 41041 |
---|---|
container_issue | |
container_start_page | 41027 |
container_title | IEEE access |
container_volume | 12 |
creator | Santos, Daniel Ribeiro Dos Julien-Vergonjanne, Anne Dkhil, Sadok Ben Parmentier, Marie Combeau, Pierre Sahuguede, Stephanie Boucle, Johann |
description | The massive deployment of IoT connected devices brings up different modern problems, such as radiofrequency spectrum saturation and energetic requirements. Organic photovoltaics are good candidates for indoor energy harvesting and data reception in a simultaneous lightwave information and power transfer scenario applied for IoT, at which the non-directive channel significantly contributes to the optical system performance. However, achieving the channel impulse response of diffuse links requires complex numerical approaches. This article presents the first ever OPV model used in a Monte-Carlo ray-tracing simulation, associated to theoretical and experimental validation. Finally, for the first time, an optical simulation with an OPV receiver is realized in a cubic environment, from which the received optical power and generated current distributions were obtained. Results show that the employed OPV is suited for indoor energy harvesting to supply low power IoT nodes, and with proper dedicated front-end, could manage to receive optical data in a SLIPT scenario. |
doi_str_mv | 10.1109/ACCESS.2024.3378056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10473057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10473057</ieee_id><doaj_id>oai_doaj_org_article_2faee5dc2e5b4ae78a14c316b49cf1a8</doaj_id><sourcerecordid>2995560629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-2e4ee49683d364481023ad775151bc11094476ea2858297d9921ef1f974b62663</originalsourceid><addsrcrecordid>eNpVkc9LwzAcxYsoKOpfoIeAJw-b-Z3mOMp0g4HC1JMQ0vbbmdE1mnQT_3szK6K5JLy894HHy7ILgseEYH0zKYrpcjmmmPIxYyrHQh5kJ5RIPWKCycM_7-PsPMY1TidPklAn2cuj_7ChRvOu9j6gpdtsW9s730XkG3T_8IwKaNuImvT57KIrW0ALt3rtUeE3m23nqm83sl2Nph2E1Sea2bCD2LtudZYdNbaNcP5zn2ZPt9PHYjZa3N_Ni8liVHHO-hEFDsC1zFnNJOc5wZTZWilBBCmrfUfOlQRLc5FTrWqtKYGGNFrxUlIp2Wk2H7i1t2vzFtzGhk_jrTPfgg8rY0PvqhYMbSyAqCsKouQWVG4JrxiRJddVQ2yeWNcD69W2_1CzycLsNcwFJZTjHUneq8H7Fvz7NnU2a78NXapqqNZCSCypTi42uKrgYwzQ_GIJNvt2ZljQ7Bc0Pwum1OWQcgDwJ8EVw0KxL1MylMA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2995560629</pqid></control><display><type>article</type><title>Toward Indoor Simulations of OPV Cells for Visible Light Communication and Energy Harvesting</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Santos, Daniel Ribeiro Dos ; Julien-Vergonjanne, Anne ; Dkhil, Sadok Ben ; Parmentier, Marie ; Combeau, Pierre ; Sahuguede, Stephanie ; Boucle, Johann</creator><creatorcontrib>Santos, Daniel Ribeiro Dos ; Julien-Vergonjanne, Anne ; Dkhil, Sadok Ben ; Parmentier, Marie ; Combeau, Pierre ; Sahuguede, Stephanie ; Boucle, Johann</creatorcontrib><description>The massive deployment of IoT connected devices brings up different modern problems, such as radiofrequency spectrum saturation and energetic requirements. Organic photovoltaics are good candidates for indoor energy harvesting and data reception in a simultaneous lightwave information and power transfer scenario applied for IoT, at which the non-directive channel significantly contributes to the optical system performance. However, achieving the channel impulse response of diffuse links requires complex numerical approaches. This article presents the first ever OPV model used in a Monte-Carlo ray-tracing simulation, associated to theoretical and experimental validation. Finally, for the first time, an optical simulation with an OPV receiver is realized in a cubic environment, from which the received optical power and generated current distributions were obtained. Results show that the employed OPV is suited for indoor energy harvesting to supply low power IoT nodes, and with proper dedicated front-end, could manage to receive optical data in a SLIPT scenario.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3378056</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Channel estimation ; Channel modeling ; Channel models ; Energy harvesting ; Engineering Sciences ; experimental demonstration ; Impulse response ; indoor energy harvesting ; Lighting ; Optical amplifiers ; optical channel simulation ; Optical communication ; Optical receivers ; Optical reflection ; Optical saturation ; Optical transmitters ; organic photovoltaics ; Photovoltaic cells ; Photovoltaic systems ; Power management ; Power transfer ; Radio frequency ; Ray tracing ; Simulation ; Visible light communication</subject><ispartof>IEEE access, 2024, Vol.12, p.41027-41041</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-2e4ee49683d364481023ad775151bc11094476ea2858297d9921ef1f974b62663</citedby><cites>FETCH-LOGICAL-c443t-2e4ee49683d364481023ad775151bc11094476ea2858297d9921ef1f974b62663</cites><orcidid>0000-0002-8226-1145 ; 0000-0002-7851-1842 ; 0000-0002-7292-5446 ; 0000-0002-1141-2874 ; 0009-0000-5757-2614 ; 0000-0002-4238-9136</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10473057$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,2095,4009,27612,27902,27903,27904,54911</link.rule.ids><backlink>$$Uhttps://unilim.hal.science/hal-04521240$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Santos, Daniel Ribeiro Dos</creatorcontrib><creatorcontrib>Julien-Vergonjanne, Anne</creatorcontrib><creatorcontrib>Dkhil, Sadok Ben</creatorcontrib><creatorcontrib>Parmentier, Marie</creatorcontrib><creatorcontrib>Combeau, Pierre</creatorcontrib><creatorcontrib>Sahuguede, Stephanie</creatorcontrib><creatorcontrib>Boucle, Johann</creatorcontrib><title>Toward Indoor Simulations of OPV Cells for Visible Light Communication and Energy Harvesting</title><title>IEEE access</title><addtitle>Access</addtitle><description>The massive deployment of IoT connected devices brings up different modern problems, such as radiofrequency spectrum saturation and energetic requirements. Organic photovoltaics are good candidates for indoor energy harvesting and data reception in a simultaneous lightwave information and power transfer scenario applied for IoT, at which the non-directive channel significantly contributes to the optical system performance. However, achieving the channel impulse response of diffuse links requires complex numerical approaches. This article presents the first ever OPV model used in a Monte-Carlo ray-tracing simulation, associated to theoretical and experimental validation. Finally, for the first time, an optical simulation with an OPV receiver is realized in a cubic environment, from which the received optical power and generated current distributions were obtained. Results show that the employed OPV is suited for indoor energy harvesting to supply low power IoT nodes, and with proper dedicated front-end, could manage to receive optical data in a SLIPT scenario.</description><subject>Channel estimation</subject><subject>Channel modeling</subject><subject>Channel models</subject><subject>Energy harvesting</subject><subject>Engineering Sciences</subject><subject>experimental demonstration</subject><subject>Impulse response</subject><subject>indoor energy harvesting</subject><subject>Lighting</subject><subject>Optical amplifiers</subject><subject>optical channel simulation</subject><subject>Optical communication</subject><subject>Optical receivers</subject><subject>Optical reflection</subject><subject>Optical saturation</subject><subject>Optical transmitters</subject><subject>organic photovoltaics</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic systems</subject><subject>Power management</subject><subject>Power transfer</subject><subject>Radio frequency</subject><subject>Ray tracing</subject><subject>Simulation</subject><subject>Visible light communication</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpVkc9LwzAcxYsoKOpfoIeAJw-b-Z3mOMp0g4HC1JMQ0vbbmdE1mnQT_3szK6K5JLy894HHy7ILgseEYH0zKYrpcjmmmPIxYyrHQh5kJ5RIPWKCycM_7-PsPMY1TidPklAn2cuj_7ChRvOu9j6gpdtsW9s730XkG3T_8IwKaNuImvT57KIrW0ALt3rtUeE3m23nqm83sl2Nph2E1Sea2bCD2LtudZYdNbaNcP5zn2ZPt9PHYjZa3N_Ni8liVHHO-hEFDsC1zFnNJOc5wZTZWilBBCmrfUfOlQRLc5FTrWqtKYGGNFrxUlIp2Wk2H7i1t2vzFtzGhk_jrTPfgg8rY0PvqhYMbSyAqCsKouQWVG4JrxiRJddVQ2yeWNcD69W2_1CzycLsNcwFJZTjHUneq8H7Fvz7NnU2a78NXapqqNZCSCypTi42uKrgYwzQ_GIJNvt2ZljQ7Bc0Pwum1OWQcgDwJ8EVw0KxL1MylMA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Santos, Daniel Ribeiro Dos</creator><creator>Julien-Vergonjanne, Anne</creator><creator>Dkhil, Sadok Ben</creator><creator>Parmentier, Marie</creator><creator>Combeau, Pierre</creator><creator>Sahuguede, Stephanie</creator><creator>Boucle, Johann</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8226-1145</orcidid><orcidid>https://orcid.org/0000-0002-7851-1842</orcidid><orcidid>https://orcid.org/0000-0002-7292-5446</orcidid><orcidid>https://orcid.org/0000-0002-1141-2874</orcidid><orcidid>https://orcid.org/0009-0000-5757-2614</orcidid><orcidid>https://orcid.org/0000-0002-4238-9136</orcidid></search><sort><creationdate>2024</creationdate><title>Toward Indoor Simulations of OPV Cells for Visible Light Communication and Energy Harvesting</title><author>Santos, Daniel Ribeiro Dos ; Julien-Vergonjanne, Anne ; Dkhil, Sadok Ben ; Parmentier, Marie ; Combeau, Pierre ; Sahuguede, Stephanie ; Boucle, Johann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-2e4ee49683d364481023ad775151bc11094476ea2858297d9921ef1f974b62663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Channel estimation</topic><topic>Channel modeling</topic><topic>Channel models</topic><topic>Energy harvesting</topic><topic>Engineering Sciences</topic><topic>experimental demonstration</topic><topic>Impulse response</topic><topic>indoor energy harvesting</topic><topic>Lighting</topic><topic>Optical amplifiers</topic><topic>optical channel simulation</topic><topic>Optical communication</topic><topic>Optical receivers</topic><topic>Optical reflection</topic><topic>Optical saturation</topic><topic>Optical transmitters</topic><topic>organic photovoltaics</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic systems</topic><topic>Power management</topic><topic>Power transfer</topic><topic>Radio frequency</topic><topic>Ray tracing</topic><topic>Simulation</topic><topic>Visible light communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, Daniel Ribeiro Dos</creatorcontrib><creatorcontrib>Julien-Vergonjanne, Anne</creatorcontrib><creatorcontrib>Dkhil, Sadok Ben</creatorcontrib><creatorcontrib>Parmentier, Marie</creatorcontrib><creatorcontrib>Combeau, Pierre</creatorcontrib><creatorcontrib>Sahuguede, Stephanie</creatorcontrib><creatorcontrib>Boucle, Johann</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, Daniel Ribeiro Dos</au><au>Julien-Vergonjanne, Anne</au><au>Dkhil, Sadok Ben</au><au>Parmentier, Marie</au><au>Combeau, Pierre</au><au>Sahuguede, Stephanie</au><au>Boucle, Johann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Indoor Simulations of OPV Cells for Visible Light Communication and Energy Harvesting</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>41027</spage><epage>41041</epage><pages>41027-41041</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The massive deployment of IoT connected devices brings up different modern problems, such as radiofrequency spectrum saturation and energetic requirements. Organic photovoltaics are good candidates for indoor energy harvesting and data reception in a simultaneous lightwave information and power transfer scenario applied for IoT, at which the non-directive channel significantly contributes to the optical system performance. However, achieving the channel impulse response of diffuse links requires complex numerical approaches. This article presents the first ever OPV model used in a Monte-Carlo ray-tracing simulation, associated to theoretical and experimental validation. Finally, for the first time, an optical simulation with an OPV receiver is realized in a cubic environment, from which the received optical power and generated current distributions were obtained. Results show that the employed OPV is suited for indoor energy harvesting to supply low power IoT nodes, and with proper dedicated front-end, could manage to receive optical data in a SLIPT scenario.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3378056</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8226-1145</orcidid><orcidid>https://orcid.org/0000-0002-7851-1842</orcidid><orcidid>https://orcid.org/0000-0002-7292-5446</orcidid><orcidid>https://orcid.org/0000-0002-1141-2874</orcidid><orcidid>https://orcid.org/0009-0000-5757-2614</orcidid><orcidid>https://orcid.org/0000-0002-4238-9136</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.41027-41041 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10473057 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Channel estimation Channel modeling Channel models Energy harvesting Engineering Sciences experimental demonstration Impulse response indoor energy harvesting Lighting Optical amplifiers optical channel simulation Optical communication Optical receivers Optical reflection Optical saturation Optical transmitters organic photovoltaics Photovoltaic cells Photovoltaic systems Power management Power transfer Radio frequency Ray tracing Simulation Visible light communication |
title | Toward Indoor Simulations of OPV Cells for Visible Light Communication and Energy Harvesting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A36%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Indoor%20Simulations%20of%20OPV%20Cells%20for%20Visible%20Light%20Communication%20and%20Energy%20Harvesting&rft.jtitle=IEEE%20access&rft.au=Santos,%20Daniel%20Ribeiro%20Dos&rft.date=2024&rft.volume=12&rft.spage=41027&rft.epage=41041&rft.pages=41027-41041&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3378056&rft_dat=%3Cproquest_ieee_%3E2995560629%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2995560629&rft_id=info:pmid/&rft_ieee_id=10473057&rft_doaj_id=oai_doaj_org_article_2faee5dc2e5b4ae78a14c316b49cf1a8&rfr_iscdi=true |