Real-Time CNN Training and Compression for Neural-Enhanced Adaptive Live Streaming
We propose a real-time convolutional neural network (CNN) training and compression method for delivering high-quality live video even in a poor network environment. The server delivers a low-resolution video segment along with the corresponding CNN for super resolution (SR), after which the client a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2024-09, Vol.46 (9), p.6023-6039 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6039 |
---|---|
container_issue | 9 |
container_start_page | 6023 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 46 |
creator | Jeong, Seunghwa Kim, Bumki Cha, Seunghoon Seo, Kwanggyoon Chang, Hayoung Lee, Jungjin Kim, Younghui Noh, Junyong |
description | We propose a real-time convolutional neural network (CNN) training and compression method for delivering high-quality live video even in a poor network environment. The server delivers a low-resolution video segment along with the corresponding CNN for super resolution (SR), after which the client applies the CNN to the segment in order to recover high-resolution video frames. To generate a trained CNN corresponding to a video segment in real-time, our method rapidly increases the training accuracy by promoting the overfitting property of the CNN while also using curriculum-based training. In addition, assuming that the pretrained CNN is already downloaded on the client side, we transfer only residual values between the updated and pretrained CNN parameters. These values can be quantized with low bits in real time while minimizing the amount of loss, as the distribution range is significantly narrower than that of the updated CNN. Quantitatively, our neural-enhanced adaptive live streaming pipeline (NEALS) achieves higher SR accuracy and a lower CNN compression loss rate within a constrained training time compared to the state-of-the-art CNN training and compression method. NEALS achieves 15 to 48% higher quality of the user experience compared to state-of-the-art neural-enhanced live streaming systems. |
doi_str_mv | 10.1109/TPAMI.2024.3377372 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10472651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10472651</ieee_id><sourcerecordid>2958296072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-cd43abbad502f0b82558a87bafa27c2f56e04cab007c289eeb8c46c7fa7741b63</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhQdRbH38ARHJ0k3qPDKZmWUJVQu1So3rMDO50UheziSC_97UVnFzDxe-cxYfQhcEzwjB6iZ9mj8sZxTTaMaYEEzQAzQliqmQcaYO0RSTmIZSUjlBJ96_Y0wijtkxmjAZSSaUmKLNBnQVpmUNQbJeB6nTZVM2r4Fu8iBp686B92XbBEXrgjUMboQXzZtuLOTBPNddX35CsNqe596BrsfuGToqdOXhfJ-n6OV2kSb34erxbpnMV6GlgvehzSOmjdE5x7TARlLOpZbC6EJTYWnBY8CR1Qbj8ZMKwEgbxVYUWoiImJidouvdbufajwF8n9Wlt1BVuoF28BlVXFIVY0FHlO5Q61rvHRRZ58pau6-M4GzrMvtxmW1dZnuXY-lqvz-YGvK_yq-8EbjcASUA_FuMBI05Yd_oO3iO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2958296072</pqid></control><display><type>article</type><title>Real-Time CNN Training and Compression for Neural-Enhanced Adaptive Live Streaming</title><source>IEEE Electronic Library (IEL)</source><creator>Jeong, Seunghwa ; Kim, Bumki ; Cha, Seunghoon ; Seo, Kwanggyoon ; Chang, Hayoung ; Lee, Jungjin ; Kim, Younghui ; Noh, Junyong</creator><creatorcontrib>Jeong, Seunghwa ; Kim, Bumki ; Cha, Seunghoon ; Seo, Kwanggyoon ; Chang, Hayoung ; Lee, Jungjin ; Kim, Younghui ; Noh, Junyong</creatorcontrib><description>We propose a real-time convolutional neural network (CNN) training and compression method for delivering high-quality live video even in a poor network environment. The server delivers a low-resolution video segment along with the corresponding CNN for super resolution (SR), after which the client applies the CNN to the segment in order to recover high-resolution video frames. To generate a trained CNN corresponding to a video segment in real-time, our method rapidly increases the training accuracy by promoting the overfitting property of the CNN while also using curriculum-based training. In addition, assuming that the pretrained CNN is already downloaded on the client side, we transfer only residual values between the updated and pretrained CNN parameters. These values can be quantized with low bits in real time while minimizing the amount of loss, as the distribution range is significantly narrower than that of the updated CNN. Quantitatively, our neural-enhanced adaptive live streaming pipeline (NEALS) achieves higher SR accuracy and a lower CNN compression loss rate within a constrained training time compared to the state-of-the-art CNN training and compression method. NEALS achieves 15 to 48% higher quality of the user experience compared to state-of-the-art neural-enhanced live streaming systems.</description><identifier>ISSN: 0162-8828</identifier><identifier>ISSN: 1939-3539</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2024.3377372</identifier><identifier>PMID: 38483797</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptive video live streaming ; Bandwidth ; CNN compression ; CNN training ; convolutional neural network (CNN) ; Convolutional neural networks ; deep learning based super resolution ; Quality of experience ; Real-time systems ; Servers ; Streaming media ; Training</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2024-09, Vol.46 (9), p.6023-6039</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c275t-cd43abbad502f0b82558a87bafa27c2f56e04cab007c289eeb8c46c7fa7741b63</cites><orcidid>0000-0002-6011-4857 ; 0000-0003-0570-4915 ; 0009-0005-9334-9264 ; 0000-0003-1925-3326 ; 0000-0003-2653-306X ; 0000-0001-5988-2288 ; 0000-0002-7318-0116 ; 0000-0003-3471-4848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10472651$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10472651$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38483797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeong, Seunghwa</creatorcontrib><creatorcontrib>Kim, Bumki</creatorcontrib><creatorcontrib>Cha, Seunghoon</creatorcontrib><creatorcontrib>Seo, Kwanggyoon</creatorcontrib><creatorcontrib>Chang, Hayoung</creatorcontrib><creatorcontrib>Lee, Jungjin</creatorcontrib><creatorcontrib>Kim, Younghui</creatorcontrib><creatorcontrib>Noh, Junyong</creatorcontrib><title>Real-Time CNN Training and Compression for Neural-Enhanced Adaptive Live Streaming</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>We propose a real-time convolutional neural network (CNN) training and compression method for delivering high-quality live video even in a poor network environment. The server delivers a low-resolution video segment along with the corresponding CNN for super resolution (SR), after which the client applies the CNN to the segment in order to recover high-resolution video frames. To generate a trained CNN corresponding to a video segment in real-time, our method rapidly increases the training accuracy by promoting the overfitting property of the CNN while also using curriculum-based training. In addition, assuming that the pretrained CNN is already downloaded on the client side, we transfer only residual values between the updated and pretrained CNN parameters. These values can be quantized with low bits in real time while minimizing the amount of loss, as the distribution range is significantly narrower than that of the updated CNN. Quantitatively, our neural-enhanced adaptive live streaming pipeline (NEALS) achieves higher SR accuracy and a lower CNN compression loss rate within a constrained training time compared to the state-of-the-art CNN training and compression method. NEALS achieves 15 to 48% higher quality of the user experience compared to state-of-the-art neural-enhanced live streaming systems.</description><subject>Adaptive video live streaming</subject><subject>Bandwidth</subject><subject>CNN compression</subject><subject>CNN training</subject><subject>convolutional neural network (CNN)</subject><subject>Convolutional neural networks</subject><subject>deep learning based super resolution</subject><subject>Quality of experience</subject><subject>Real-time systems</subject><subject>Servers</subject><subject>Streaming media</subject><subject>Training</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLw0AUhQdRbH38ARHJ0k3qPDKZmWUJVQu1So3rMDO50UheziSC_97UVnFzDxe-cxYfQhcEzwjB6iZ9mj8sZxTTaMaYEEzQAzQliqmQcaYO0RSTmIZSUjlBJ96_Y0wijtkxmjAZSSaUmKLNBnQVpmUNQbJeB6nTZVM2r4Fu8iBp686B92XbBEXrgjUMboQXzZtuLOTBPNddX35CsNqe596BrsfuGToqdOXhfJ-n6OV2kSb34erxbpnMV6GlgvehzSOmjdE5x7TARlLOpZbC6EJTYWnBY8CR1Qbj8ZMKwEgbxVYUWoiImJidouvdbufajwF8n9Wlt1BVuoF28BlVXFIVY0FHlO5Q61rvHRRZ58pau6-M4GzrMvtxmW1dZnuXY-lqvz-YGvK_yq-8EbjcASUA_FuMBI05Yd_oO3iO</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Jeong, Seunghwa</creator><creator>Kim, Bumki</creator><creator>Cha, Seunghoon</creator><creator>Seo, Kwanggyoon</creator><creator>Chang, Hayoung</creator><creator>Lee, Jungjin</creator><creator>Kim, Younghui</creator><creator>Noh, Junyong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6011-4857</orcidid><orcidid>https://orcid.org/0000-0003-0570-4915</orcidid><orcidid>https://orcid.org/0009-0005-9334-9264</orcidid><orcidid>https://orcid.org/0000-0003-1925-3326</orcidid><orcidid>https://orcid.org/0000-0003-2653-306X</orcidid><orcidid>https://orcid.org/0000-0001-5988-2288</orcidid><orcidid>https://orcid.org/0000-0002-7318-0116</orcidid><orcidid>https://orcid.org/0000-0003-3471-4848</orcidid></search><sort><creationdate>20240901</creationdate><title>Real-Time CNN Training and Compression for Neural-Enhanced Adaptive Live Streaming</title><author>Jeong, Seunghwa ; Kim, Bumki ; Cha, Seunghoon ; Seo, Kwanggyoon ; Chang, Hayoung ; Lee, Jungjin ; Kim, Younghui ; Noh, Junyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-cd43abbad502f0b82558a87bafa27c2f56e04cab007c289eeb8c46c7fa7741b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive video live streaming</topic><topic>Bandwidth</topic><topic>CNN compression</topic><topic>CNN training</topic><topic>convolutional neural network (CNN)</topic><topic>Convolutional neural networks</topic><topic>deep learning based super resolution</topic><topic>Quality of experience</topic><topic>Real-time systems</topic><topic>Servers</topic><topic>Streaming media</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Seunghwa</creatorcontrib><creatorcontrib>Kim, Bumki</creatorcontrib><creatorcontrib>Cha, Seunghoon</creatorcontrib><creatorcontrib>Seo, Kwanggyoon</creatorcontrib><creatorcontrib>Chang, Hayoung</creatorcontrib><creatorcontrib>Lee, Jungjin</creatorcontrib><creatorcontrib>Kim, Younghui</creatorcontrib><creatorcontrib>Noh, Junyong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jeong, Seunghwa</au><au>Kim, Bumki</au><au>Cha, Seunghoon</au><au>Seo, Kwanggyoon</au><au>Chang, Hayoung</au><au>Lee, Jungjin</au><au>Kim, Younghui</au><au>Noh, Junyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time CNN Training and Compression for Neural-Enhanced Adaptive Live Streaming</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>46</volume><issue>9</issue><spage>6023</spage><epage>6039</epage><pages>6023-6039</pages><issn>0162-8828</issn><issn>1939-3539</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>We propose a real-time convolutional neural network (CNN) training and compression method for delivering high-quality live video even in a poor network environment. The server delivers a low-resolution video segment along with the corresponding CNN for super resolution (SR), after which the client applies the CNN to the segment in order to recover high-resolution video frames. To generate a trained CNN corresponding to a video segment in real-time, our method rapidly increases the training accuracy by promoting the overfitting property of the CNN while also using curriculum-based training. In addition, assuming that the pretrained CNN is already downloaded on the client side, we transfer only residual values between the updated and pretrained CNN parameters. These values can be quantized with low bits in real time while minimizing the amount of loss, as the distribution range is significantly narrower than that of the updated CNN. Quantitatively, our neural-enhanced adaptive live streaming pipeline (NEALS) achieves higher SR accuracy and a lower CNN compression loss rate within a constrained training time compared to the state-of-the-art CNN training and compression method. NEALS achieves 15 to 48% higher quality of the user experience compared to state-of-the-art neural-enhanced live streaming systems.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38483797</pmid><doi>10.1109/TPAMI.2024.3377372</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6011-4857</orcidid><orcidid>https://orcid.org/0000-0003-0570-4915</orcidid><orcidid>https://orcid.org/0009-0005-9334-9264</orcidid><orcidid>https://orcid.org/0000-0003-1925-3326</orcidid><orcidid>https://orcid.org/0000-0003-2653-306X</orcidid><orcidid>https://orcid.org/0000-0001-5988-2288</orcidid><orcidid>https://orcid.org/0000-0002-7318-0116</orcidid><orcidid>https://orcid.org/0000-0003-3471-4848</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2024-09, Vol.46 (9), p.6023-6039 |
issn | 0162-8828 1939-3539 1939-3539 2160-9292 |
language | eng |
recordid | cdi_ieee_primary_10472651 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive video live streaming Bandwidth CNN compression CNN training convolutional neural network (CNN) Convolutional neural networks deep learning based super resolution Quality of experience Real-time systems Servers Streaming media Training |
title | Real-Time CNN Training and Compression for Neural-Enhanced Adaptive Live Streaming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T04%3A28%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20CNN%20Training%20and%20Compression%20for%20Neural-Enhanced%20Adaptive%20Live%20Streaming&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Jeong,%20Seunghwa&rft.date=2024-09-01&rft.volume=46&rft.issue=9&rft.spage=6023&rft.epage=6039&rft.pages=6023-6039&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2024.3377372&rft_dat=%3Cproquest_RIE%3E2958296072%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2958296072&rft_id=info:pmid/38483797&rft_ieee_id=10472651&rfr_iscdi=true |