Real-Time CNN Training and Compression for Neural-Enhanced Adaptive Live Streaming

We propose a real-time convolutional neural network (CNN) training and compression method for delivering high-quality live video even in a poor network environment. The server delivers a low-resolution video segment along with the corresponding CNN for super resolution (SR), after which the client a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2024-09, Vol.46 (9), p.6023-6039
Hauptverfasser: Jeong, Seunghwa, Kim, Bumki, Cha, Seunghoon, Seo, Kwanggyoon, Chang, Hayoung, Lee, Jungjin, Kim, Younghui, Noh, Junyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6039
container_issue 9
container_start_page 6023
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 46
creator Jeong, Seunghwa
Kim, Bumki
Cha, Seunghoon
Seo, Kwanggyoon
Chang, Hayoung
Lee, Jungjin
Kim, Younghui
Noh, Junyong
description We propose a real-time convolutional neural network (CNN) training and compression method for delivering high-quality live video even in a poor network environment. The server delivers a low-resolution video segment along with the corresponding CNN for super resolution (SR), after which the client applies the CNN to the segment in order to recover high-resolution video frames. To generate a trained CNN corresponding to a video segment in real-time, our method rapidly increases the training accuracy by promoting the overfitting property of the CNN while also using curriculum-based training. In addition, assuming that the pretrained CNN is already downloaded on the client side, we transfer only residual values between the updated and pretrained CNN parameters. These values can be quantized with low bits in real time while minimizing the amount of loss, as the distribution range is significantly narrower than that of the updated CNN. Quantitatively, our neural-enhanced adaptive live streaming pipeline (NEALS) achieves higher SR accuracy and a lower CNN compression loss rate within a constrained training time compared to the state-of-the-art CNN training and compression method. NEALS achieves 15 to 48% higher quality of the user experience compared to state-of-the-art neural-enhanced live streaming systems.
doi_str_mv 10.1109/TPAMI.2024.3377372
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10472651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10472651</ieee_id><sourcerecordid>2958296072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-cd43abbad502f0b82558a87bafa27c2f56e04cab007c289eeb8c46c7fa7741b63</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhQdRbH38ARHJ0k3qPDKZmWUJVQu1So3rMDO50UheziSC_97UVnFzDxe-cxYfQhcEzwjB6iZ9mj8sZxTTaMaYEEzQAzQliqmQcaYO0RSTmIZSUjlBJ96_Y0wijtkxmjAZSSaUmKLNBnQVpmUNQbJeB6nTZVM2r4Fu8iBp686B92XbBEXrgjUMboQXzZtuLOTBPNddX35CsNqe596BrsfuGToqdOXhfJ-n6OV2kSb34erxbpnMV6GlgvehzSOmjdE5x7TARlLOpZbC6EJTYWnBY8CR1Qbj8ZMKwEgbxVYUWoiImJidouvdbufajwF8n9Wlt1BVuoF28BlVXFIVY0FHlO5Q61rvHRRZ58pau6-M4GzrMvtxmW1dZnuXY-lqvz-YGvK_yq-8EbjcASUA_FuMBI05Yd_oO3iO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2958296072</pqid></control><display><type>article</type><title>Real-Time CNN Training and Compression for Neural-Enhanced Adaptive Live Streaming</title><source>IEEE Electronic Library (IEL)</source><creator>Jeong, Seunghwa ; Kim, Bumki ; Cha, Seunghoon ; Seo, Kwanggyoon ; Chang, Hayoung ; Lee, Jungjin ; Kim, Younghui ; Noh, Junyong</creator><creatorcontrib>Jeong, Seunghwa ; Kim, Bumki ; Cha, Seunghoon ; Seo, Kwanggyoon ; Chang, Hayoung ; Lee, Jungjin ; Kim, Younghui ; Noh, Junyong</creatorcontrib><description>We propose a real-time convolutional neural network (CNN) training and compression method for delivering high-quality live video even in a poor network environment. The server delivers a low-resolution video segment along with the corresponding CNN for super resolution (SR), after which the client applies the CNN to the segment in order to recover high-resolution video frames. To generate a trained CNN corresponding to a video segment in real-time, our method rapidly increases the training accuracy by promoting the overfitting property of the CNN while also using curriculum-based training. In addition, assuming that the pretrained CNN is already downloaded on the client side, we transfer only residual values between the updated and pretrained CNN parameters. These values can be quantized with low bits in real time while minimizing the amount of loss, as the distribution range is significantly narrower than that of the updated CNN. Quantitatively, our neural-enhanced adaptive live streaming pipeline (NEALS) achieves higher SR accuracy and a lower CNN compression loss rate within a constrained training time compared to the state-of-the-art CNN training and compression method. NEALS achieves 15 to 48% higher quality of the user experience compared to state-of-the-art neural-enhanced live streaming systems.</description><identifier>ISSN: 0162-8828</identifier><identifier>ISSN: 1939-3539</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2024.3377372</identifier><identifier>PMID: 38483797</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptive video live streaming ; Bandwidth ; CNN compression ; CNN training ; convolutional neural network (CNN) ; Convolutional neural networks ; deep learning based super resolution ; Quality of experience ; Real-time systems ; Servers ; Streaming media ; Training</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2024-09, Vol.46 (9), p.6023-6039</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c275t-cd43abbad502f0b82558a87bafa27c2f56e04cab007c289eeb8c46c7fa7741b63</cites><orcidid>0000-0002-6011-4857 ; 0000-0003-0570-4915 ; 0009-0005-9334-9264 ; 0000-0003-1925-3326 ; 0000-0003-2653-306X ; 0000-0001-5988-2288 ; 0000-0002-7318-0116 ; 0000-0003-3471-4848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10472651$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10472651$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38483797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeong, Seunghwa</creatorcontrib><creatorcontrib>Kim, Bumki</creatorcontrib><creatorcontrib>Cha, Seunghoon</creatorcontrib><creatorcontrib>Seo, Kwanggyoon</creatorcontrib><creatorcontrib>Chang, Hayoung</creatorcontrib><creatorcontrib>Lee, Jungjin</creatorcontrib><creatorcontrib>Kim, Younghui</creatorcontrib><creatorcontrib>Noh, Junyong</creatorcontrib><title>Real-Time CNN Training and Compression for Neural-Enhanced Adaptive Live Streaming</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>We propose a real-time convolutional neural network (CNN) training and compression method for delivering high-quality live video even in a poor network environment. The server delivers a low-resolution video segment along with the corresponding CNN for super resolution (SR), after which the client applies the CNN to the segment in order to recover high-resolution video frames. To generate a trained CNN corresponding to a video segment in real-time, our method rapidly increases the training accuracy by promoting the overfitting property of the CNN while also using curriculum-based training. In addition, assuming that the pretrained CNN is already downloaded on the client side, we transfer only residual values between the updated and pretrained CNN parameters. These values can be quantized with low bits in real time while minimizing the amount of loss, as the distribution range is significantly narrower than that of the updated CNN. Quantitatively, our neural-enhanced adaptive live streaming pipeline (NEALS) achieves higher SR accuracy and a lower CNN compression loss rate within a constrained training time compared to the state-of-the-art CNN training and compression method. NEALS achieves 15 to 48% higher quality of the user experience compared to state-of-the-art neural-enhanced live streaming systems.</description><subject>Adaptive video live streaming</subject><subject>Bandwidth</subject><subject>CNN compression</subject><subject>CNN training</subject><subject>convolutional neural network (CNN)</subject><subject>Convolutional neural networks</subject><subject>deep learning based super resolution</subject><subject>Quality of experience</subject><subject>Real-time systems</subject><subject>Servers</subject><subject>Streaming media</subject><subject>Training</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLw0AUhQdRbH38ARHJ0k3qPDKZmWUJVQu1So3rMDO50UheziSC_97UVnFzDxe-cxYfQhcEzwjB6iZ9mj8sZxTTaMaYEEzQAzQliqmQcaYO0RSTmIZSUjlBJ96_Y0wijtkxmjAZSSaUmKLNBnQVpmUNQbJeB6nTZVM2r4Fu8iBp686B92XbBEXrgjUMboQXzZtuLOTBPNddX35CsNqe596BrsfuGToqdOXhfJ-n6OV2kSb34erxbpnMV6GlgvehzSOmjdE5x7TARlLOpZbC6EJTYWnBY8CR1Qbj8ZMKwEgbxVYUWoiImJidouvdbufajwF8n9Wlt1BVuoF28BlVXFIVY0FHlO5Q61rvHRRZ58pau6-M4GzrMvtxmW1dZnuXY-lqvz-YGvK_yq-8EbjcASUA_FuMBI05Yd_oO3iO</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Jeong, Seunghwa</creator><creator>Kim, Bumki</creator><creator>Cha, Seunghoon</creator><creator>Seo, Kwanggyoon</creator><creator>Chang, Hayoung</creator><creator>Lee, Jungjin</creator><creator>Kim, Younghui</creator><creator>Noh, Junyong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6011-4857</orcidid><orcidid>https://orcid.org/0000-0003-0570-4915</orcidid><orcidid>https://orcid.org/0009-0005-9334-9264</orcidid><orcidid>https://orcid.org/0000-0003-1925-3326</orcidid><orcidid>https://orcid.org/0000-0003-2653-306X</orcidid><orcidid>https://orcid.org/0000-0001-5988-2288</orcidid><orcidid>https://orcid.org/0000-0002-7318-0116</orcidid><orcidid>https://orcid.org/0000-0003-3471-4848</orcidid></search><sort><creationdate>20240901</creationdate><title>Real-Time CNN Training and Compression for Neural-Enhanced Adaptive Live Streaming</title><author>Jeong, Seunghwa ; Kim, Bumki ; Cha, Seunghoon ; Seo, Kwanggyoon ; Chang, Hayoung ; Lee, Jungjin ; Kim, Younghui ; Noh, Junyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-cd43abbad502f0b82558a87bafa27c2f56e04cab007c289eeb8c46c7fa7741b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive video live streaming</topic><topic>Bandwidth</topic><topic>CNN compression</topic><topic>CNN training</topic><topic>convolutional neural network (CNN)</topic><topic>Convolutional neural networks</topic><topic>deep learning based super resolution</topic><topic>Quality of experience</topic><topic>Real-time systems</topic><topic>Servers</topic><topic>Streaming media</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Seunghwa</creatorcontrib><creatorcontrib>Kim, Bumki</creatorcontrib><creatorcontrib>Cha, Seunghoon</creatorcontrib><creatorcontrib>Seo, Kwanggyoon</creatorcontrib><creatorcontrib>Chang, Hayoung</creatorcontrib><creatorcontrib>Lee, Jungjin</creatorcontrib><creatorcontrib>Kim, Younghui</creatorcontrib><creatorcontrib>Noh, Junyong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jeong, Seunghwa</au><au>Kim, Bumki</au><au>Cha, Seunghoon</au><au>Seo, Kwanggyoon</au><au>Chang, Hayoung</au><au>Lee, Jungjin</au><au>Kim, Younghui</au><au>Noh, Junyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time CNN Training and Compression for Neural-Enhanced Adaptive Live Streaming</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>46</volume><issue>9</issue><spage>6023</spage><epage>6039</epage><pages>6023-6039</pages><issn>0162-8828</issn><issn>1939-3539</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>We propose a real-time convolutional neural network (CNN) training and compression method for delivering high-quality live video even in a poor network environment. The server delivers a low-resolution video segment along with the corresponding CNN for super resolution (SR), after which the client applies the CNN to the segment in order to recover high-resolution video frames. To generate a trained CNN corresponding to a video segment in real-time, our method rapidly increases the training accuracy by promoting the overfitting property of the CNN while also using curriculum-based training. In addition, assuming that the pretrained CNN is already downloaded on the client side, we transfer only residual values between the updated and pretrained CNN parameters. These values can be quantized with low bits in real time while minimizing the amount of loss, as the distribution range is significantly narrower than that of the updated CNN. Quantitatively, our neural-enhanced adaptive live streaming pipeline (NEALS) achieves higher SR accuracy and a lower CNN compression loss rate within a constrained training time compared to the state-of-the-art CNN training and compression method. NEALS achieves 15 to 48% higher quality of the user experience compared to state-of-the-art neural-enhanced live streaming systems.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38483797</pmid><doi>10.1109/TPAMI.2024.3377372</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6011-4857</orcidid><orcidid>https://orcid.org/0000-0003-0570-4915</orcidid><orcidid>https://orcid.org/0009-0005-9334-9264</orcidid><orcidid>https://orcid.org/0000-0003-1925-3326</orcidid><orcidid>https://orcid.org/0000-0003-2653-306X</orcidid><orcidid>https://orcid.org/0000-0001-5988-2288</orcidid><orcidid>https://orcid.org/0000-0002-7318-0116</orcidid><orcidid>https://orcid.org/0000-0003-3471-4848</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2024-09, Vol.46 (9), p.6023-6039
issn 0162-8828
1939-3539
1939-3539
2160-9292
language eng
recordid cdi_ieee_primary_10472651
source IEEE Electronic Library (IEL)
subjects Adaptive video live streaming
Bandwidth
CNN compression
CNN training
convolutional neural network (CNN)
Convolutional neural networks
deep learning based super resolution
Quality of experience
Real-time systems
Servers
Streaming media
Training
title Real-Time CNN Training and Compression for Neural-Enhanced Adaptive Live Streaming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T04%3A28%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20CNN%20Training%20and%20Compression%20for%20Neural-Enhanced%20Adaptive%20Live%20Streaming&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Jeong,%20Seunghwa&rft.date=2024-09-01&rft.volume=46&rft.issue=9&rft.spage=6023&rft.epage=6039&rft.pages=6023-6039&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2024.3377372&rft_dat=%3Cproquest_RIE%3E2958296072%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2958296072&rft_id=info:pmid/38483797&rft_ieee_id=10472651&rfr_iscdi=true