Inchworm-inspired soft robot with controllable locomotion based on self-sensing of deformation
Inchworm-inspired robots have become a prominent fixture in bionic research, mainly owing to the hotspot's focus on manufacturing actuating materials and bionic structures. An inchworm can crawl stably along a contact surface using gait control, achieved through muscle actuation and accurate pe...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2024-05, Vol.9 (5), p.1-8 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE robotics and automation letters |
container_volume | 9 |
creator | Di, Yue Zhang, Yuyan Wen, Yintang Yao, Haiying Zhou, Zixiang Ren, Zhixin Tian, Hongmiao Shao, Jinyou |
description | Inchworm-inspired robots have become a prominent fixture in bionic research, mainly owing to the hotspot's focus on manufacturing actuating materials and bionic structures. An inchworm can crawl stably along a contact surface using gait control, achieved through muscle actuation and accurate perception of its crawling posture. Currently, posture perception is an important aspect often neglected by inchworm-inspired robots. Inspired by the stable crawling behavior of the inchworm, this paper proposes a crawling soft robot with electrically driven artificial muscle, sensing ability, and key parts of the anisotropic friction unit that can sense and control crawling behavior. The electric-driven artificial muscle comprises a liquid crystal elastomer and electric heating film, which can achieve low-voltage actuating deformation. The sensing ability is based on a carbon nanotube-based mesh-like structure, which can accurately monitor deformation. The robot uses the anisotropic friction unit to move forward during crawling. The crawling gait of the inchworm-inspired soft robot is accurately detected through sensing and perception. The fuzzy control system achieves the precise control of crawling step gait. Crawling using accurate perception and feedback control opened a new way of researching soft crawling robots. |
doi_str_mv | 10.1109/LRA.2024.3377557 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10472585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10472585</ieee_id><sourcerecordid>3015057315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-9ea595a2ac61d481cb79b8b0a4a4cd1b13b463411e32b39088b963b73d74f5d73</originalsourceid><addsrcrecordid>eNpNkEtLAzEURoMoWGr3LlwEXE_NczJZluKjUBBEt4Ykk9gp00lNUor_3pTpoqv7Lc53L_cAcI_RHGMkn9YfizlBhM0pFYJzcQUmpKSKirq-vsi3YJbSFiGEORFU8gn4Xg12cwxxV3VD2nfRtTAFn2EMJmR47PIG2jDkGPpem97BPtiwC7kLAzQ6FbqE5HpfJTekbviBwcPW-bJQn6A7cON1n9zsPKfg6-X5c_lWrd9fV8vFurKE8VxJp7nkmmhb45Y12BohTWOQZprZFhtMDaspw9hRYqhETWNkTY2grWCet4JOweO4dx_D78GlrLbhEIdyUtHyLOKCYl4oNFI2hpSi82ofu52OfwojdRKpikh1EqnOIkvlYax0zrkLnAnCG07_Ab1Jb60</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3015057315</pqid></control><display><type>article</type><title>Inchworm-inspired soft robot with controllable locomotion based on self-sensing of deformation</title><source>IEEE Electronic Library (IEL)</source><creator>Di, Yue ; Zhang, Yuyan ; Wen, Yintang ; Yao, Haiying ; Zhou, Zixiang ; Ren, Zhixin ; Tian, Hongmiao ; Shao, Jinyou</creator><creatorcontrib>Di, Yue ; Zhang, Yuyan ; Wen, Yintang ; Yao, Haiying ; Zhou, Zixiang ; Ren, Zhixin ; Tian, Hongmiao ; Shao, Jinyou</creatorcontrib><description>Inchworm-inspired robots have become a prominent fixture in bionic research, mainly owing to the hotspot's focus on manufacturing actuating materials and bionic structures. An inchworm can crawl stably along a contact surface using gait control, achieved through muscle actuation and accurate perception of its crawling posture. Currently, posture perception is an important aspect often neglected by inchworm-inspired robots. Inspired by the stable crawling behavior of the inchworm, this paper proposes a crawling soft robot with electrically driven artificial muscle, sensing ability, and key parts of the anisotropic friction unit that can sense and control crawling behavior. The electric-driven artificial muscle comprises a liquid crystal elastomer and electric heating film, which can achieve low-voltage actuating deformation. The sensing ability is based on a carbon nanotube-based mesh-like structure, which can accurately monitor deformation. The robot uses the anisotropic friction unit to move forward during crawling. The crawling gait of the inchworm-inspired soft robot is accurately detected through sensing and perception. The fuzzy control system achieves the precise control of crawling step gait. Crawling using accurate perception and feedback control opened a new way of researching soft crawling robots.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2024.3377557</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuation ; Artificial muscle ; Artificial muscles ; Bionics ; Carbon nanotubes ; Controllability ; Deformation ; Elastomers ; Electric contacts ; Electric heating ; Feedback control ; Force ; Friction ; Fuzzy control ; Gait ; Liquid crystals ; Locomotion ; Perception ; Robot dynamics ; Robot sensing systems ; Robots ; Self-sensing ; Sensors ; Soft robot ; Soft robotics</subject><ispartof>IEEE robotics and automation letters, 2024-05, Vol.9 (5), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-9ea595a2ac61d481cb79b8b0a4a4cd1b13b463411e32b39088b963b73d74f5d73</cites><orcidid>0000-0003-2525-4587 ; 0009-0005-4445-2054 ; 0000-0002-6062-6668 ; 0009-0000-5547-6186 ; 0000-0001-7178-3805 ; 0000-0002-7377-8492</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10472585$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10472585$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Di, Yue</creatorcontrib><creatorcontrib>Zhang, Yuyan</creatorcontrib><creatorcontrib>Wen, Yintang</creatorcontrib><creatorcontrib>Yao, Haiying</creatorcontrib><creatorcontrib>Zhou, Zixiang</creatorcontrib><creatorcontrib>Ren, Zhixin</creatorcontrib><creatorcontrib>Tian, Hongmiao</creatorcontrib><creatorcontrib>Shao, Jinyou</creatorcontrib><title>Inchworm-inspired soft robot with controllable locomotion based on self-sensing of deformation</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Inchworm-inspired robots have become a prominent fixture in bionic research, mainly owing to the hotspot's focus on manufacturing actuating materials and bionic structures. An inchworm can crawl stably along a contact surface using gait control, achieved through muscle actuation and accurate perception of its crawling posture. Currently, posture perception is an important aspect often neglected by inchworm-inspired robots. Inspired by the stable crawling behavior of the inchworm, this paper proposes a crawling soft robot with electrically driven artificial muscle, sensing ability, and key parts of the anisotropic friction unit that can sense and control crawling behavior. The electric-driven artificial muscle comprises a liquid crystal elastomer and electric heating film, which can achieve low-voltage actuating deformation. The sensing ability is based on a carbon nanotube-based mesh-like structure, which can accurately monitor deformation. The robot uses the anisotropic friction unit to move forward during crawling. The crawling gait of the inchworm-inspired soft robot is accurately detected through sensing and perception. The fuzzy control system achieves the precise control of crawling step gait. Crawling using accurate perception and feedback control opened a new way of researching soft crawling robots.</description><subject>Actuation</subject><subject>Artificial muscle</subject><subject>Artificial muscles</subject><subject>Bionics</subject><subject>Carbon nanotubes</subject><subject>Controllability</subject><subject>Deformation</subject><subject>Elastomers</subject><subject>Electric contacts</subject><subject>Electric heating</subject><subject>Feedback control</subject><subject>Force</subject><subject>Friction</subject><subject>Fuzzy control</subject><subject>Gait</subject><subject>Liquid crystals</subject><subject>Locomotion</subject><subject>Perception</subject><subject>Robot dynamics</subject><subject>Robot sensing systems</subject><subject>Robots</subject><subject>Self-sensing</subject><subject>Sensors</subject><subject>Soft robot</subject><subject>Soft robotics</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLAzEURoMoWGr3LlwEXE_NczJZluKjUBBEt4Ykk9gp00lNUor_3pTpoqv7Lc53L_cAcI_RHGMkn9YfizlBhM0pFYJzcQUmpKSKirq-vsi3YJbSFiGEORFU8gn4Xg12cwxxV3VD2nfRtTAFn2EMJmR47PIG2jDkGPpem97BPtiwC7kLAzQ6FbqE5HpfJTekbviBwcPW-bJQn6A7cON1n9zsPKfg6-X5c_lWrd9fV8vFurKE8VxJp7nkmmhb45Y12BohTWOQZprZFhtMDaspw9hRYqhETWNkTY2grWCet4JOweO4dx_D78GlrLbhEIdyUtHyLOKCYl4oNFI2hpSi82ofu52OfwojdRKpikh1EqnOIkvlYax0zrkLnAnCG07_Ab1Jb60</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Di, Yue</creator><creator>Zhang, Yuyan</creator><creator>Wen, Yintang</creator><creator>Yao, Haiying</creator><creator>Zhou, Zixiang</creator><creator>Ren, Zhixin</creator><creator>Tian, Hongmiao</creator><creator>Shao, Jinyou</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2525-4587</orcidid><orcidid>https://orcid.org/0009-0005-4445-2054</orcidid><orcidid>https://orcid.org/0000-0002-6062-6668</orcidid><orcidid>https://orcid.org/0009-0000-5547-6186</orcidid><orcidid>https://orcid.org/0000-0001-7178-3805</orcidid><orcidid>https://orcid.org/0000-0002-7377-8492</orcidid></search><sort><creationdate>20240501</creationdate><title>Inchworm-inspired soft robot with controllable locomotion based on self-sensing of deformation</title><author>Di, Yue ; Zhang, Yuyan ; Wen, Yintang ; Yao, Haiying ; Zhou, Zixiang ; Ren, Zhixin ; Tian, Hongmiao ; Shao, Jinyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-9ea595a2ac61d481cb79b8b0a4a4cd1b13b463411e32b39088b963b73d74f5d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuation</topic><topic>Artificial muscle</topic><topic>Artificial muscles</topic><topic>Bionics</topic><topic>Carbon nanotubes</topic><topic>Controllability</topic><topic>Deformation</topic><topic>Elastomers</topic><topic>Electric contacts</topic><topic>Electric heating</topic><topic>Feedback control</topic><topic>Force</topic><topic>Friction</topic><topic>Fuzzy control</topic><topic>Gait</topic><topic>Liquid crystals</topic><topic>Locomotion</topic><topic>Perception</topic><topic>Robot dynamics</topic><topic>Robot sensing systems</topic><topic>Robots</topic><topic>Self-sensing</topic><topic>Sensors</topic><topic>Soft robot</topic><topic>Soft robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di, Yue</creatorcontrib><creatorcontrib>Zhang, Yuyan</creatorcontrib><creatorcontrib>Wen, Yintang</creatorcontrib><creatorcontrib>Yao, Haiying</creatorcontrib><creatorcontrib>Zhou, Zixiang</creatorcontrib><creatorcontrib>Ren, Zhixin</creatorcontrib><creatorcontrib>Tian, Hongmiao</creatorcontrib><creatorcontrib>Shao, Jinyou</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Di, Yue</au><au>Zhang, Yuyan</au><au>Wen, Yintang</au><au>Yao, Haiying</au><au>Zhou, Zixiang</au><au>Ren, Zhixin</au><au>Tian, Hongmiao</au><au>Shao, Jinyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inchworm-inspired soft robot with controllable locomotion based on self-sensing of deformation</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>9</volume><issue>5</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Inchworm-inspired robots have become a prominent fixture in bionic research, mainly owing to the hotspot's focus on manufacturing actuating materials and bionic structures. An inchworm can crawl stably along a contact surface using gait control, achieved through muscle actuation and accurate perception of its crawling posture. Currently, posture perception is an important aspect often neglected by inchworm-inspired robots. Inspired by the stable crawling behavior of the inchworm, this paper proposes a crawling soft robot with electrically driven artificial muscle, sensing ability, and key parts of the anisotropic friction unit that can sense and control crawling behavior. The electric-driven artificial muscle comprises a liquid crystal elastomer and electric heating film, which can achieve low-voltage actuating deformation. The sensing ability is based on a carbon nanotube-based mesh-like structure, which can accurately monitor deformation. The robot uses the anisotropic friction unit to move forward during crawling. The crawling gait of the inchworm-inspired soft robot is accurately detected through sensing and perception. The fuzzy control system achieves the precise control of crawling step gait. Crawling using accurate perception and feedback control opened a new way of researching soft crawling robots.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2024.3377557</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2525-4587</orcidid><orcidid>https://orcid.org/0009-0005-4445-2054</orcidid><orcidid>https://orcid.org/0000-0002-6062-6668</orcidid><orcidid>https://orcid.org/0009-0000-5547-6186</orcidid><orcidid>https://orcid.org/0000-0001-7178-3805</orcidid><orcidid>https://orcid.org/0000-0002-7377-8492</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2024-05, Vol.9 (5), p.1-8 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_ieee_primary_10472585 |
source | IEEE Electronic Library (IEL) |
subjects | Actuation Artificial muscle Artificial muscles Bionics Carbon nanotubes Controllability Deformation Elastomers Electric contacts Electric heating Feedback control Force Friction Fuzzy control Gait Liquid crystals Locomotion Perception Robot dynamics Robot sensing systems Robots Self-sensing Sensors Soft robot Soft robotics |
title | Inchworm-inspired soft robot with controllable locomotion based on self-sensing of deformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A13%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inchworm-inspired%20soft%20robot%20with%20controllable%20locomotion%20based%20on%20self-sensing%20of%20deformation&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Di,%20Yue&rft.date=2024-05-01&rft.volume=9&rft.issue=5&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2024.3377557&rft_dat=%3Cproquest_RIE%3E3015057315%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3015057315&rft_id=info:pmid/&rft_ieee_id=10472585&rfr_iscdi=true |