A Method Toward Comprehensive Identification for Piezoelectric Dynamic System With Multimodal Hysteresis and Uncertainty Compensation

An accurate model of the piezoelectric actuator (PEA) is important for the controller design to realize high-performance closed-loop control. However, the PEA exhibits inherent fast, slow modes (SMs), hysteresis nonlinearity, and system uncertainty at the same time. In this article, a two-stage mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-10
Hauptverfasser: Lin, Jianfeng, Qi, Chenkun, Xue, Yuxuan, Wang, Yichen, Liu, Xinyu, Gao, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 73
creator Lin, Jianfeng
Qi, Chenkun
Xue, Yuxuan
Wang, Yichen
Liu, Xinyu
Gao, Feng
description An accurate model of the piezoelectric actuator (PEA) is important for the controller design to realize high-performance closed-loop control. However, the PEA exhibits inherent fast, slow modes (SMs), hysteresis nonlinearity, and system uncertainty at the same time. In this article, a two-stage modeling approach called slow fast hysteresis with uncertainty compensation (SFHUC) for the piezoelectric dynamic system is proposed to achieve a high-accuracy model between input voltage and output displacement. The fast, SMs and hysteresis nonlinearity of the PEA are estimated first based on a linear-linear-nonlinear cascade model. Then the system uncertainty of the PEA is compensated by a nonlinear artificial neural network, where the input is the voltage signal and the output is the residual error of this linear-linear-nonlinear cascade model. The corresponding comprehensive identification algorithm including fast, SMs, hysteresis nonlinearity, and system uncertainty is developed for accurate displacement prediction. Experimental results on a typical PEA demonstrate the effectiveness of the proposed comprehensive identification approach.
doi_str_mv 10.1109/TIM.2024.3376010
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10466632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10466632</ieee_id><sourcerecordid>2993890920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-ca4d34ca8a95937ffba6d410084931be367d819bdd5e4d1f492eba3fbd98c6f63</originalsourceid><addsrcrecordid>eNpNkM1LwzAYxoMoOD_uHjwEPHcmTZo2xzG_BhsKTjyWNHnDMtZmJpky7_7fdm4HTw88PB_wQ-iKkiGlRN7OJ7NhTnI-ZKwUhJIjNKBFUWZSiPwYDQihVSZ5IU7RWYxLQkgpeDlAPyM8g7TwBs_9lwoGj327DrCALrpPwBMDXXLWaZWc77D1Ab84-PawAp2C0_hu26m219dtTNDid5cWeLZZJdd6o1b4aWcHiC5i1Rn81mkISbkubf-O-pe_4Qt0YtUqwuVBz9Hbw_18_JRNnx8n49E00zkvUqYVN4xrVSlZSFZa2yhhOCWk4pLRBpgoTUVlY0wB3FDLZQ6NYrYxstLCCnaObva76-A_NhBTvfSb0PWXdS4lqySROelTZJ_SwccYwNbr4FoVtjUl9Q523cOud7DrA-y-cr2vOAD4F-dCCJazXy3cfos</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2993890920</pqid></control><display><type>article</type><title>A Method Toward Comprehensive Identification for Piezoelectric Dynamic System With Multimodal Hysteresis and Uncertainty Compensation</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, Jianfeng ; Qi, Chenkun ; Xue, Yuxuan ; Wang, Yichen ; Liu, Xinyu ; Gao, Feng</creator><creatorcontrib>Lin, Jianfeng ; Qi, Chenkun ; Xue, Yuxuan ; Wang, Yichen ; Liu, Xinyu ; Gao, Feng</creatorcontrib><description>An accurate model of the piezoelectric actuator (PEA) is important for the controller design to realize high-performance closed-loop control. However, the PEA exhibits inherent fast, slow modes (SMs), hysteresis nonlinearity, and system uncertainty at the same time. In this article, a two-stage modeling approach called slow fast hysteresis with uncertainty compensation (SFHUC) for the piezoelectric dynamic system is proposed to achieve a high-accuracy model between input voltage and output displacement. The fast, SMs and hysteresis nonlinearity of the PEA are estimated first based on a linear-linear-nonlinear cascade model. Then the system uncertainty of the PEA is compensated by a nonlinear artificial neural network, where the input is the voltage signal and the output is the residual error of this linear-linear-nonlinear cascade model. The corresponding comprehensive identification algorithm including fast, SMs, hysteresis nonlinearity, and system uncertainty is developed for accurate displacement prediction. Experimental results on a typical PEA demonstrate the effectiveness of the proposed comprehensive identification approach.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3376010</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Autoregressive processes ; Closed loops ; Compensation ; Control systems design ; Creep ; Dynamical systems ; Electric potential ; Feedback control ; Hysteresis ; Model accuracy ; Modeling ; Nonlinearity ; parameter identification ; piezoelectric actuator (PEA) ; Piezoelectric actuators ; system uncertainty ; Uncertainty ; Vibrations ; Voltage</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-ca4d34ca8a95937ffba6d410084931be367d819bdd5e4d1f492eba3fbd98c6f63</cites><orcidid>0009-0009-0772-3811 ; 0000-0002-7545-1338 ; 0000-0001-5358-719X ; 0000-0002-7467-5540 ; 0009-0003-5747-3810 ; 0000-0002-9501-9083</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10466632$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10466632$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lin, Jianfeng</creatorcontrib><creatorcontrib>Qi, Chenkun</creatorcontrib><creatorcontrib>Xue, Yuxuan</creatorcontrib><creatorcontrib>Wang, Yichen</creatorcontrib><creatorcontrib>Liu, Xinyu</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><title>A Method Toward Comprehensive Identification for Piezoelectric Dynamic System With Multimodal Hysteresis and Uncertainty Compensation</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>An accurate model of the piezoelectric actuator (PEA) is important for the controller design to realize high-performance closed-loop control. However, the PEA exhibits inherent fast, slow modes (SMs), hysteresis nonlinearity, and system uncertainty at the same time. In this article, a two-stage modeling approach called slow fast hysteresis with uncertainty compensation (SFHUC) for the piezoelectric dynamic system is proposed to achieve a high-accuracy model between input voltage and output displacement. The fast, SMs and hysteresis nonlinearity of the PEA are estimated first based on a linear-linear-nonlinear cascade model. Then the system uncertainty of the PEA is compensated by a nonlinear artificial neural network, where the input is the voltage signal and the output is the residual error of this linear-linear-nonlinear cascade model. The corresponding comprehensive identification algorithm including fast, SMs, hysteresis nonlinearity, and system uncertainty is developed for accurate displacement prediction. Experimental results on a typical PEA demonstrate the effectiveness of the proposed comprehensive identification approach.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Autoregressive processes</subject><subject>Closed loops</subject><subject>Compensation</subject><subject>Control systems design</subject><subject>Creep</subject><subject>Dynamical systems</subject><subject>Electric potential</subject><subject>Feedback control</subject><subject>Hysteresis</subject><subject>Model accuracy</subject><subject>Modeling</subject><subject>Nonlinearity</subject><subject>parameter identification</subject><subject>piezoelectric actuator (PEA)</subject><subject>Piezoelectric actuators</subject><subject>system uncertainty</subject><subject>Uncertainty</subject><subject>Vibrations</subject><subject>Voltage</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LwzAYxoMoOD_uHjwEPHcmTZo2xzG_BhsKTjyWNHnDMtZmJpky7_7fdm4HTw88PB_wQ-iKkiGlRN7OJ7NhTnI-ZKwUhJIjNKBFUWZSiPwYDQihVSZ5IU7RWYxLQkgpeDlAPyM8g7TwBs_9lwoGj327DrCALrpPwBMDXXLWaZWc77D1Ab84-PawAp2C0_hu26m219dtTNDid5cWeLZZJdd6o1b4aWcHiC5i1Rn81mkISbkubf-O-pe_4Qt0YtUqwuVBz9Hbw_18_JRNnx8n49E00zkvUqYVN4xrVSlZSFZa2yhhOCWk4pLRBpgoTUVlY0wB3FDLZQ6NYrYxstLCCnaObva76-A_NhBTvfSb0PWXdS4lqySROelTZJ_SwccYwNbr4FoVtjUl9Q523cOud7DrA-y-cr2vOAD4F-dCCJazXy3cfos</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lin, Jianfeng</creator><creator>Qi, Chenkun</creator><creator>Xue, Yuxuan</creator><creator>Wang, Yichen</creator><creator>Liu, Xinyu</creator><creator>Gao, Feng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-0772-3811</orcidid><orcidid>https://orcid.org/0000-0002-7545-1338</orcidid><orcidid>https://orcid.org/0000-0001-5358-719X</orcidid><orcidid>https://orcid.org/0000-0002-7467-5540</orcidid><orcidid>https://orcid.org/0009-0003-5747-3810</orcidid><orcidid>https://orcid.org/0000-0002-9501-9083</orcidid></search><sort><creationdate>2024</creationdate><title>A Method Toward Comprehensive Identification for Piezoelectric Dynamic System With Multimodal Hysteresis and Uncertainty Compensation</title><author>Lin, Jianfeng ; Qi, Chenkun ; Xue, Yuxuan ; Wang, Yichen ; Liu, Xinyu ; Gao, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-ca4d34ca8a95937ffba6d410084931be367d819bdd5e4d1f492eba3fbd98c6f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Autoregressive processes</topic><topic>Closed loops</topic><topic>Compensation</topic><topic>Control systems design</topic><topic>Creep</topic><topic>Dynamical systems</topic><topic>Electric potential</topic><topic>Feedback control</topic><topic>Hysteresis</topic><topic>Model accuracy</topic><topic>Modeling</topic><topic>Nonlinearity</topic><topic>parameter identification</topic><topic>piezoelectric actuator (PEA)</topic><topic>Piezoelectric actuators</topic><topic>system uncertainty</topic><topic>Uncertainty</topic><topic>Vibrations</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Jianfeng</creatorcontrib><creatorcontrib>Qi, Chenkun</creatorcontrib><creatorcontrib>Xue, Yuxuan</creatorcontrib><creatorcontrib>Wang, Yichen</creatorcontrib><creatorcontrib>Liu, Xinyu</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Jianfeng</au><au>Qi, Chenkun</au><au>Xue, Yuxuan</au><au>Wang, Yichen</au><au>Liu, Xinyu</au><au>Gao, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Method Toward Comprehensive Identification for Piezoelectric Dynamic System With Multimodal Hysteresis and Uncertainty Compensation</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>An accurate model of the piezoelectric actuator (PEA) is important for the controller design to realize high-performance closed-loop control. However, the PEA exhibits inherent fast, slow modes (SMs), hysteresis nonlinearity, and system uncertainty at the same time. In this article, a two-stage modeling approach called slow fast hysteresis with uncertainty compensation (SFHUC) for the piezoelectric dynamic system is proposed to achieve a high-accuracy model between input voltage and output displacement. The fast, SMs and hysteresis nonlinearity of the PEA are estimated first based on a linear-linear-nonlinear cascade model. Then the system uncertainty of the PEA is compensated by a nonlinear artificial neural network, where the input is the voltage signal and the output is the residual error of this linear-linear-nonlinear cascade model. The corresponding comprehensive identification algorithm including fast, SMs, hysteresis nonlinearity, and system uncertainty is developed for accurate displacement prediction. Experimental results on a typical PEA demonstrate the effectiveness of the proposed comprehensive identification approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2024.3376010</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0009-0772-3811</orcidid><orcidid>https://orcid.org/0000-0002-7545-1338</orcidid><orcidid>https://orcid.org/0000-0001-5358-719X</orcidid><orcidid>https://orcid.org/0000-0002-7467-5540</orcidid><orcidid>https://orcid.org/0009-0003-5747-3810</orcidid><orcidid>https://orcid.org/0000-0002-9501-9083</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-10
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_10466632
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Autoregressive processes
Closed loops
Compensation
Control systems design
Creep
Dynamical systems
Electric potential
Feedback control
Hysteresis
Model accuracy
Modeling
Nonlinearity
parameter identification
piezoelectric actuator (PEA)
Piezoelectric actuators
system uncertainty
Uncertainty
Vibrations
Voltage
title A Method Toward Comprehensive Identification for Piezoelectric Dynamic System With Multimodal Hysteresis and Uncertainty Compensation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A10%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Method%20Toward%20Comprehensive%20Identification%20for%20Piezoelectric%20Dynamic%20System%20With%20Multimodal%20Hysteresis%20and%20Uncertainty%20Compensation&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Lin,%20Jianfeng&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3376010&rft_dat=%3Cproquest_RIE%3E2993890920%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2993890920&rft_id=info:pmid/&rft_ieee_id=10466632&rfr_iscdi=true