Path-Based Origin-Destination Matrix Estimation Utilizing Macroscopic Traffic Dynamics
The origin-destination (OD) matrix is a crucial requirement for transportation management and planning. Efficient OD matrix estimation is important to enhance the advancement of intelligent transportation systems. We present a novel approach for the estimation of static OD matrices using within-day...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2024-08, Vol.25 (8), p.8819-8836 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8836 |
---|---|
container_issue | 8 |
container_start_page | 8819 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 25 |
creator | Englezou, Yiolanda Timotheou, Stelios Panayiotou, Christos G. |
description | The origin-destination (OD) matrix is a crucial requirement for transportation management and planning. Efficient OD matrix estimation is important to enhance the advancement of intelligent transportation systems. We present a novel approach for the estimation of static OD matrices using within-day traffic flow dynamics. The signalised cell transmission model (CTM) is utilised to capture the dynamics of a specific network and associate road segment count observations with path demands. This model is extended to capture per-path densities, yielding a path-based OD matrix problem formulation that results in a nonlinear optimisation problem. Efficient solution methodologies, based on convex and nonconvex optimisation theory, are developed for free-flow and congested conditions, respectively. In contrast with the majority of research for the OD matrix estimation problem, this work offers the following advantages: 1) no prior or target OD matrices are needed to implement the approach outlasting the bias and dependency on such matrices, 2) no historical data are required for accurate estimations, 3) no route choice model or split ratios are needed, 4) no user equilibrium conditions are required for high-quality estimation, and 5) even low partial coverage of the network is sufficient to provide high-quality OD matrix estimation. We illustrate the efficiency of the proposed approach on three literature real-life arterial networks and show that the proposed approach yields accurate results under both free-flow and congested scenarios. |
doi_str_mv | 10.1109/TITS.2024.3370473 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10466429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10466429</ieee_id><sourcerecordid>10_1109_TITS_2024_3370473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-64e96dd7b6109860341c544b05903b40248917b3a3aa23f53a5079c57d22df6d3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIlMIHIHHIDzisn4mP0AdUKioSKdfIcZxi1CaVnQPl63GUHjjNanZnNTMI3RNICQH1WKyKj5QC5SljGfCMXaAJESLHAEReDjPlWIGAa3QTwndkuSBkgj7fdf-Fn3WwdbLxbudaPLehd63uXdcmb7r37idZROYwMtve7d2va3dxZ3wXTHd0Jim8bpqI81OrD86EW3TV6H2wd2ecou1yUcxe8Xrzspo9rbGhJO-x5FbJus4qGTPkEhgnRnBegVDAKh7j5IpkFdNMa8oawbSATBmR1ZTWjazZFJHx72AleNuURx-d-lNJoByKKYdiyqGY8lxM1DyMGmet_XfPpeRUsT-31V9D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Path-Based Origin-Destination Matrix Estimation Utilizing Macroscopic Traffic Dynamics</title><source>IEEE Electronic Library (IEL)</source><creator>Englezou, Yiolanda ; Timotheou, Stelios ; Panayiotou, Christos G.</creator><creatorcontrib>Englezou, Yiolanda ; Timotheou, Stelios ; Panayiotou, Christos G.</creatorcontrib><description>The origin-destination (OD) matrix is a crucial requirement for transportation management and planning. Efficient OD matrix estimation is important to enhance the advancement of intelligent transportation systems. We present a novel approach for the estimation of static OD matrices using within-day traffic flow dynamics. The signalised cell transmission model (CTM) is utilised to capture the dynamics of a specific network and associate road segment count observations with path demands. This model is extended to capture per-path densities, yielding a path-based OD matrix problem formulation that results in a nonlinear optimisation problem. Efficient solution methodologies, based on convex and nonconvex optimisation theory, are developed for free-flow and congested conditions, respectively. In contrast with the majority of research for the OD matrix estimation problem, this work offers the following advantages: 1) no prior or target OD matrices are needed to implement the approach outlasting the bias and dependency on such matrices, 2) no historical data are required for accurate estimations, 3) no route choice model or split ratios are needed, 4) no user equilibrium conditions are required for high-quality estimation, and 5) even low partial coverage of the network is sufficient to provide high-quality OD matrix estimation. We illustrate the efficiency of the proposed approach on three literature real-life arterial networks and show that the proposed approach yields accurate results under both free-flow and congested scenarios.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3370473</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data models ; Estimation ; Europe ; fine-grained traffic measurements ; macroscopic traffic dynamics ; Matrix converters ; nonlinear optimisation ; Optimization ; Origin-destination (OD) matrix estimation ; path demand ; Roads ; signalised path-based cell transmission model ; Vehicle dynamics</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-08, Vol.25 (8), p.8819-8836</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-64e96dd7b6109860341c544b05903b40248917b3a3aa23f53a5079c57d22df6d3</cites><orcidid>0000-0003-2826-0501 ; 0000-0002-3617-7962 ; 0000-0002-6476-9025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10466429$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27913,27914,54747</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10466429$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Englezou, Yiolanda</creatorcontrib><creatorcontrib>Timotheou, Stelios</creatorcontrib><creatorcontrib>Panayiotou, Christos G.</creatorcontrib><title>Path-Based Origin-Destination Matrix Estimation Utilizing Macroscopic Traffic Dynamics</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>The origin-destination (OD) matrix is a crucial requirement for transportation management and planning. Efficient OD matrix estimation is important to enhance the advancement of intelligent transportation systems. We present a novel approach for the estimation of static OD matrices using within-day traffic flow dynamics. The signalised cell transmission model (CTM) is utilised to capture the dynamics of a specific network and associate road segment count observations with path demands. This model is extended to capture per-path densities, yielding a path-based OD matrix problem formulation that results in a nonlinear optimisation problem. Efficient solution methodologies, based on convex and nonconvex optimisation theory, are developed for free-flow and congested conditions, respectively. In contrast with the majority of research for the OD matrix estimation problem, this work offers the following advantages: 1) no prior or target OD matrices are needed to implement the approach outlasting the bias and dependency on such matrices, 2) no historical data are required for accurate estimations, 3) no route choice model or split ratios are needed, 4) no user equilibrium conditions are required for high-quality estimation, and 5) even low partial coverage of the network is sufficient to provide high-quality OD matrix estimation. We illustrate the efficiency of the proposed approach on three literature real-life arterial networks and show that the proposed approach yields accurate results under both free-flow and congested scenarios.</description><subject>Data models</subject><subject>Estimation</subject><subject>Europe</subject><subject>fine-grained traffic measurements</subject><subject>macroscopic traffic dynamics</subject><subject>Matrix converters</subject><subject>nonlinear optimisation</subject><subject>Optimization</subject><subject>Origin-destination (OD) matrix estimation</subject><subject>path demand</subject><subject>Roads</subject><subject>signalised path-based cell transmission model</subject><subject>Vehicle dynamics</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUMtOwzAQtBBIlMIHIHHIDzisn4mP0AdUKioSKdfIcZxi1CaVnQPl63GUHjjNanZnNTMI3RNICQH1WKyKj5QC5SljGfCMXaAJESLHAEReDjPlWIGAa3QTwndkuSBkgj7fdf-Fn3WwdbLxbudaPLehd63uXdcmb7r37idZROYwMtve7d2va3dxZ3wXTHd0Jim8bpqI81OrD86EW3TV6H2wd2ecou1yUcxe8Xrzspo9rbGhJO-x5FbJus4qGTPkEhgnRnBegVDAKh7j5IpkFdNMa8oawbSATBmR1ZTWjazZFJHx72AleNuURx-d-lNJoByKKYdiyqGY8lxM1DyMGmet_XfPpeRUsT-31V9D</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Englezou, Yiolanda</creator><creator>Timotheou, Stelios</creator><creator>Panayiotou, Christos G.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2826-0501</orcidid><orcidid>https://orcid.org/0000-0002-3617-7962</orcidid><orcidid>https://orcid.org/0000-0002-6476-9025</orcidid></search><sort><creationdate>20240801</creationdate><title>Path-Based Origin-Destination Matrix Estimation Utilizing Macroscopic Traffic Dynamics</title><author>Englezou, Yiolanda ; Timotheou, Stelios ; Panayiotou, Christos G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-64e96dd7b6109860341c544b05903b40248917b3a3aa23f53a5079c57d22df6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data models</topic><topic>Estimation</topic><topic>Europe</topic><topic>fine-grained traffic measurements</topic><topic>macroscopic traffic dynamics</topic><topic>Matrix converters</topic><topic>nonlinear optimisation</topic><topic>Optimization</topic><topic>Origin-destination (OD) matrix estimation</topic><topic>path demand</topic><topic>Roads</topic><topic>signalised path-based cell transmission model</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Englezou, Yiolanda</creatorcontrib><creatorcontrib>Timotheou, Stelios</creatorcontrib><creatorcontrib>Panayiotou, Christos G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Englezou, Yiolanda</au><au>Timotheou, Stelios</au><au>Panayiotou, Christos G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Path-Based Origin-Destination Matrix Estimation Utilizing Macroscopic Traffic Dynamics</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>25</volume><issue>8</issue><spage>8819</spage><epage>8836</epage><pages>8819-8836</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>The origin-destination (OD) matrix is a crucial requirement for transportation management and planning. Efficient OD matrix estimation is important to enhance the advancement of intelligent transportation systems. We present a novel approach for the estimation of static OD matrices using within-day traffic flow dynamics. The signalised cell transmission model (CTM) is utilised to capture the dynamics of a specific network and associate road segment count observations with path demands. This model is extended to capture per-path densities, yielding a path-based OD matrix problem formulation that results in a nonlinear optimisation problem. Efficient solution methodologies, based on convex and nonconvex optimisation theory, are developed for free-flow and congested conditions, respectively. In contrast with the majority of research for the OD matrix estimation problem, this work offers the following advantages: 1) no prior or target OD matrices are needed to implement the approach outlasting the bias and dependency on such matrices, 2) no historical data are required for accurate estimations, 3) no route choice model or split ratios are needed, 4) no user equilibrium conditions are required for high-quality estimation, and 5) even low partial coverage of the network is sufficient to provide high-quality OD matrix estimation. We illustrate the efficiency of the proposed approach on three literature real-life arterial networks and show that the proposed approach yields accurate results under both free-flow and congested scenarios.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3370473</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2826-0501</orcidid><orcidid>https://orcid.org/0000-0002-3617-7962</orcidid><orcidid>https://orcid.org/0000-0002-6476-9025</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2024-08, Vol.25 (8), p.8819-8836 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_ieee_primary_10466429 |
source | IEEE Electronic Library (IEL) |
subjects | Data models Estimation Europe fine-grained traffic measurements macroscopic traffic dynamics Matrix converters nonlinear optimisation Optimization Origin-destination (OD) matrix estimation path demand Roads signalised path-based cell transmission model Vehicle dynamics |
title | Path-Based Origin-Destination Matrix Estimation Utilizing Macroscopic Traffic Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Path-Based%20Origin-Destination%20Matrix%20Estimation%20Utilizing%20Macroscopic%20Traffic%20Dynamics&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Englezou,%20Yiolanda&rft.date=2024-08-01&rft.volume=25&rft.issue=8&rft.spage=8819&rft.epage=8836&rft.pages=8819-8836&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3370473&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2024_3370473%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10466429&rfr_iscdi=true |