Electrical Simulations of the SIS100 Superconducting Dipole and Quadrupole Circuits: Transients, Earthing and Failure Modes

The 100 Tm superconducting synchrotron SIS100 is the main accelerator of the international Facility for Antiproton and Ion Research (FAIR) currently under advanced construction in Darmstadt, Germany. The SIS100 dipole circuit which creates the magnetic field required to bend the beam, consists of 10...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2024-08, Vol.34 (5), p.1-5
Hauptverfasser: Szwangruber, P. B., Raginel, V., Delkov, D., Ravaioli, E., Plyusnin, V., Michna, M., Wilk, A., Woloszyk, M., Freisleben, W., Dziewiecki, M., Ziolko, M., Roux, C., Galla, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 5
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 34
creator Szwangruber, P. B.
Raginel, V.
Delkov, D.
Ravaioli, E.
Plyusnin, V.
Michna, M.
Wilk, A.
Woloszyk, M.
Freisleben, W.
Dziewiecki, M.
Ziolko, M.
Roux, C.
Galla, S.
description The 100 Tm superconducting synchrotron SIS100 is the main accelerator of the international Facility for Antiproton and Ion Research (FAIR) currently under advanced construction in Darmstadt, Germany. The SIS100 dipole circuit which creates the magnetic field required to bend the beam, consists of 108 dipoles distributed over six arc sections of the ring. The magnetic field for the beam focusing is generated by three individual quadrupole circuits with total amount of 166 magnets located in both arc and straight sections of the ring. The dipole circuit is powered from two synchronized power converters and will be cycled up to 13.2 kA at 28 kA/s. The dipole magnet chain is not self-protecting. 12 energy extraction resistors are used to protect the superconducting coils and bus-bars against overheating and overvoltage in case of a quench. The largest quadrupole circuit consists of 83 magnets. The nominal current is 10.5 kA cycled up to 22 kA/s. Similarly to dipoles, the quadrupole circuit is not self-protecting. Four energy extraction units are used to discharge the circuit's energy in case of a quench or fast power abort. This work presents a customized Python software tool created to simulate electrical behavior of a superconducting magnet chain. The software is under development at GSI. However, certain modules strongly rely on the approach developed at CERN. The paper contains selected simulations of the SIS100 dipole and defocusing quadrupole circuits. Special attention is drawn to: transient effects during typical operation and during the fast power abort; the damping effect of vacuum chambers; voltage distribution in the circuits and basic failure modes.
doi_str_mv 10.1109/TASC.2024.3375293
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10465249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10465249</ieee_id><sourcerecordid>2973244658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-1ea360ff7dcfc117154212c1aabc61a68c320befaec66b3d95ffa3a9b9a371fc3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhoMoWKs_QPCw4NXUnd1sPryV2qpQEUk9h-lm125Jk7ofB_HPm9gePM0MPO878ETRNdAJAC3uV9NyNmGUJRPOM8EKfhKNQIg8ZgLEab9TAXHOGD-PLpzbUgpJnohR9DNvlPTWSGxIaXahQW-61pFOE79RpHwpgVJShr2ysmvrIL1pP8mj2XeNItjW5D1gbcPfOTNWBuPdA1lZbJ1RrXd3ZI7Wb4bQQC_QNMEq8trVyl1GZxobp66Ocxx9LOar2XO8fHt6mU2XsWQ58zEo5CnVOqullgAZiIQBk4C4lilgmkvO6FppVDJN17wuhNbIsVgXyDPQko-j20Pv3nZfQTlfbbtg2_5lxYqMsyRJRd5TcKCk7ZyzSld7a3Zovyug1eC4GhxXg-Pq6LjP3BwyRin1j-8LWVLwX7uweeY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973244658</pqid></control><display><type>article</type><title>Electrical Simulations of the SIS100 Superconducting Dipole and Quadrupole Circuits: Transients, Earthing and Failure Modes</title><source>IEEE Electronic Library (IEL)</source><creator>Szwangruber, P. B. ; Raginel, V. ; Delkov, D. ; Ravaioli, E. ; Plyusnin, V. ; Michna, M. ; Wilk, A. ; Woloszyk, M. ; Freisleben, W. ; Dziewiecki, M. ; Ziolko, M. ; Roux, C. ; Galla, S.</creator><creatorcontrib>Szwangruber, P. B. ; Raginel, V. ; Delkov, D. ; Ravaioli, E. ; Plyusnin, V. ; Michna, M. ; Wilk, A. ; Woloszyk, M. ; Freisleben, W. ; Dziewiecki, M. ; Ziolko, M. ; Roux, C. ; Galla, S.</creatorcontrib><description>The 100 Tm superconducting synchrotron SIS100 is the main accelerator of the international Facility for Antiproton and Ion Research (FAIR) currently under advanced construction in Darmstadt, Germany. The SIS100 dipole circuit which creates the magnetic field required to bend the beam, consists of 108 dipoles distributed over six arc sections of the ring. The magnetic field for the beam focusing is generated by three individual quadrupole circuits with total amount of 166 magnets located in both arc and straight sections of the ring. The dipole circuit is powered from two synchronized power converters and will be cycled up to 13.2 kA at 28 kA/s. The dipole magnet chain is not self-protecting. 12 energy extraction resistors are used to protect the superconducting coils and bus-bars against overheating and overvoltage in case of a quench. The largest quadrupole circuit consists of 83 magnets. The nominal current is 10.5 kA cycled up to 22 kA/s. Similarly to dipoles, the quadrupole circuit is not self-protecting. Four energy extraction units are used to discharge the circuit's energy in case of a quench or fast power abort. This work presents a customized Python software tool created to simulate electrical behavior of a superconducting magnet chain. The software is under development at GSI. However, certain modules strongly rely on the approach developed at CERN. The paper contains selected simulations of the SIS100 dipole and defocusing quadrupole circuits. Special attention is drawn to: transient effects during typical operation and during the fast power abort; the damping effect of vacuum chambers; voltage distribution in the circuits and basic failure modes.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2024.3375293</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antiparticles ; Antiprotons ; Circuits ; Damping ; Defocusing ; Dipoles ; Electrical grounding ; electrical simulation ; Failure modes ; FAIR project ; Impedance ; Inductance ; Integrated circuit modeling ; Magnetic fields ; Magnets ; Overheating ; Power converters ; Quadrupoles ; Simulation ; SIS100 ; Software ; superconducting magnet ; Superconducting magnets ; Superconductivity ; Transient analysis ; transients ; Vacuum chambers ; Voltage</subject><ispartof>IEEE transactions on applied superconductivity, 2024-08, Vol.34 (5), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c282t-1ea360ff7dcfc117154212c1aabc61a68c320befaec66b3d95ffa3a9b9a371fc3</cites><orcidid>0009-0001-8342-6247 ; 0009-0003-9598-1840 ; 0000-0003-0833-100X ; 0000-0003-0962-8585 ; 0000-0002-2179-4925 ; 0009-0005-1071-8360 ; 0000-0002-9683-7459 ; 0000-0001-5313-9450 ; 0000-0002-5265-6189 ; 0000-0002-7651-5313 ; 0000-0002-8769-082X ; 0000-0001-5323-7421</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10465249$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10465249$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Szwangruber, P. B.</creatorcontrib><creatorcontrib>Raginel, V.</creatorcontrib><creatorcontrib>Delkov, D.</creatorcontrib><creatorcontrib>Ravaioli, E.</creatorcontrib><creatorcontrib>Plyusnin, V.</creatorcontrib><creatorcontrib>Michna, M.</creatorcontrib><creatorcontrib>Wilk, A.</creatorcontrib><creatorcontrib>Woloszyk, M.</creatorcontrib><creatorcontrib>Freisleben, W.</creatorcontrib><creatorcontrib>Dziewiecki, M.</creatorcontrib><creatorcontrib>Ziolko, M.</creatorcontrib><creatorcontrib>Roux, C.</creatorcontrib><creatorcontrib>Galla, S.</creatorcontrib><title>Electrical Simulations of the SIS100 Superconducting Dipole and Quadrupole Circuits: Transients, Earthing and Failure Modes</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The 100 Tm superconducting synchrotron SIS100 is the main accelerator of the international Facility for Antiproton and Ion Research (FAIR) currently under advanced construction in Darmstadt, Germany. The SIS100 dipole circuit which creates the magnetic field required to bend the beam, consists of 108 dipoles distributed over six arc sections of the ring. The magnetic field for the beam focusing is generated by three individual quadrupole circuits with total amount of 166 magnets located in both arc and straight sections of the ring. The dipole circuit is powered from two synchronized power converters and will be cycled up to 13.2 kA at 28 kA/s. The dipole magnet chain is not self-protecting. 12 energy extraction resistors are used to protect the superconducting coils and bus-bars against overheating and overvoltage in case of a quench. The largest quadrupole circuit consists of 83 magnets. The nominal current is 10.5 kA cycled up to 22 kA/s. Similarly to dipoles, the quadrupole circuit is not self-protecting. Four energy extraction units are used to discharge the circuit's energy in case of a quench or fast power abort. This work presents a customized Python software tool created to simulate electrical behavior of a superconducting magnet chain. The software is under development at GSI. However, certain modules strongly rely on the approach developed at CERN. The paper contains selected simulations of the SIS100 dipole and defocusing quadrupole circuits. Special attention is drawn to: transient effects during typical operation and during the fast power abort; the damping effect of vacuum chambers; voltage distribution in the circuits and basic failure modes.</description><subject>Antiparticles</subject><subject>Antiprotons</subject><subject>Circuits</subject><subject>Damping</subject><subject>Defocusing</subject><subject>Dipoles</subject><subject>Electrical grounding</subject><subject>electrical simulation</subject><subject>Failure modes</subject><subject>FAIR project</subject><subject>Impedance</subject><subject>Inductance</subject><subject>Integrated circuit modeling</subject><subject>Magnetic fields</subject><subject>Magnets</subject><subject>Overheating</subject><subject>Power converters</subject><subject>Quadrupoles</subject><subject>Simulation</subject><subject>SIS100</subject><subject>Software</subject><subject>superconducting magnet</subject><subject>Superconducting magnets</subject><subject>Superconductivity</subject><subject>Transient analysis</subject><subject>transients</subject><subject>Vacuum chambers</subject><subject>Voltage</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhoMoWKs_QPCw4NXUnd1sPryV2qpQEUk9h-lm125Jk7ofB_HPm9gePM0MPO878ETRNdAJAC3uV9NyNmGUJRPOM8EKfhKNQIg8ZgLEab9TAXHOGD-PLpzbUgpJnohR9DNvlPTWSGxIaXahQW-61pFOE79RpHwpgVJShr2ysmvrIL1pP8mj2XeNItjW5D1gbcPfOTNWBuPdA1lZbJ1RrXd3ZI7Wb4bQQC_QNMEq8trVyl1GZxobp66Ocxx9LOar2XO8fHt6mU2XsWQ58zEo5CnVOqullgAZiIQBk4C4lilgmkvO6FppVDJN17wuhNbIsVgXyDPQko-j20Pv3nZfQTlfbbtg2_5lxYqMsyRJRd5TcKCk7ZyzSld7a3Zovyug1eC4GhxXg-Pq6LjP3BwyRin1j-8LWVLwX7uweeY</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Szwangruber, P. B.</creator><creator>Raginel, V.</creator><creator>Delkov, D.</creator><creator>Ravaioli, E.</creator><creator>Plyusnin, V.</creator><creator>Michna, M.</creator><creator>Wilk, A.</creator><creator>Woloszyk, M.</creator><creator>Freisleben, W.</creator><creator>Dziewiecki, M.</creator><creator>Ziolko, M.</creator><creator>Roux, C.</creator><creator>Galla, S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0001-8342-6247</orcidid><orcidid>https://orcid.org/0009-0003-9598-1840</orcidid><orcidid>https://orcid.org/0000-0003-0833-100X</orcidid><orcidid>https://orcid.org/0000-0003-0962-8585</orcidid><orcidid>https://orcid.org/0000-0002-2179-4925</orcidid><orcidid>https://orcid.org/0009-0005-1071-8360</orcidid><orcidid>https://orcid.org/0000-0002-9683-7459</orcidid><orcidid>https://orcid.org/0000-0001-5313-9450</orcidid><orcidid>https://orcid.org/0000-0002-5265-6189</orcidid><orcidid>https://orcid.org/0000-0002-7651-5313</orcidid><orcidid>https://orcid.org/0000-0002-8769-082X</orcidid><orcidid>https://orcid.org/0000-0001-5323-7421</orcidid></search><sort><creationdate>20240801</creationdate><title>Electrical Simulations of the SIS100 Superconducting Dipole and Quadrupole Circuits: Transients, Earthing and Failure Modes</title><author>Szwangruber, P. B. ; Raginel, V. ; Delkov, D. ; Ravaioli, E. ; Plyusnin, V. ; Michna, M. ; Wilk, A. ; Woloszyk, M. ; Freisleben, W. ; Dziewiecki, M. ; Ziolko, M. ; Roux, C. ; Galla, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-1ea360ff7dcfc117154212c1aabc61a68c320befaec66b3d95ffa3a9b9a371fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antiparticles</topic><topic>Antiprotons</topic><topic>Circuits</topic><topic>Damping</topic><topic>Defocusing</topic><topic>Dipoles</topic><topic>Electrical grounding</topic><topic>electrical simulation</topic><topic>Failure modes</topic><topic>FAIR project</topic><topic>Impedance</topic><topic>Inductance</topic><topic>Integrated circuit modeling</topic><topic>Magnetic fields</topic><topic>Magnets</topic><topic>Overheating</topic><topic>Power converters</topic><topic>Quadrupoles</topic><topic>Simulation</topic><topic>SIS100</topic><topic>Software</topic><topic>superconducting magnet</topic><topic>Superconducting magnets</topic><topic>Superconductivity</topic><topic>Transient analysis</topic><topic>transients</topic><topic>Vacuum chambers</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szwangruber, P. B.</creatorcontrib><creatorcontrib>Raginel, V.</creatorcontrib><creatorcontrib>Delkov, D.</creatorcontrib><creatorcontrib>Ravaioli, E.</creatorcontrib><creatorcontrib>Plyusnin, V.</creatorcontrib><creatorcontrib>Michna, M.</creatorcontrib><creatorcontrib>Wilk, A.</creatorcontrib><creatorcontrib>Woloszyk, M.</creatorcontrib><creatorcontrib>Freisleben, W.</creatorcontrib><creatorcontrib>Dziewiecki, M.</creatorcontrib><creatorcontrib>Ziolko, M.</creatorcontrib><creatorcontrib>Roux, C.</creatorcontrib><creatorcontrib>Galla, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Szwangruber, P. B.</au><au>Raginel, V.</au><au>Delkov, D.</au><au>Ravaioli, E.</au><au>Plyusnin, V.</au><au>Michna, M.</au><au>Wilk, A.</au><au>Woloszyk, M.</au><au>Freisleben, W.</au><au>Dziewiecki, M.</au><au>Ziolko, M.</au><au>Roux, C.</au><au>Galla, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical Simulations of the SIS100 Superconducting Dipole and Quadrupole Circuits: Transients, Earthing and Failure Modes</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>34</volume><issue>5</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The 100 Tm superconducting synchrotron SIS100 is the main accelerator of the international Facility for Antiproton and Ion Research (FAIR) currently under advanced construction in Darmstadt, Germany. The SIS100 dipole circuit which creates the magnetic field required to bend the beam, consists of 108 dipoles distributed over six arc sections of the ring. The magnetic field for the beam focusing is generated by three individual quadrupole circuits with total amount of 166 magnets located in both arc and straight sections of the ring. The dipole circuit is powered from two synchronized power converters and will be cycled up to 13.2 kA at 28 kA/s. The dipole magnet chain is not self-protecting. 12 energy extraction resistors are used to protect the superconducting coils and bus-bars against overheating and overvoltage in case of a quench. The largest quadrupole circuit consists of 83 magnets. The nominal current is 10.5 kA cycled up to 22 kA/s. Similarly to dipoles, the quadrupole circuit is not self-protecting. Four energy extraction units are used to discharge the circuit's energy in case of a quench or fast power abort. This work presents a customized Python software tool created to simulate electrical behavior of a superconducting magnet chain. The software is under development at GSI. However, certain modules strongly rely on the approach developed at CERN. The paper contains selected simulations of the SIS100 dipole and defocusing quadrupole circuits. Special attention is drawn to: transient effects during typical operation and during the fast power abort; the damping effect of vacuum chambers; voltage distribution in the circuits and basic failure modes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2024.3375293</doi><tpages>5</tpages><orcidid>https://orcid.org/0009-0001-8342-6247</orcidid><orcidid>https://orcid.org/0009-0003-9598-1840</orcidid><orcidid>https://orcid.org/0000-0003-0833-100X</orcidid><orcidid>https://orcid.org/0000-0003-0962-8585</orcidid><orcidid>https://orcid.org/0000-0002-2179-4925</orcidid><orcidid>https://orcid.org/0009-0005-1071-8360</orcidid><orcidid>https://orcid.org/0000-0002-9683-7459</orcidid><orcidid>https://orcid.org/0000-0001-5313-9450</orcidid><orcidid>https://orcid.org/0000-0002-5265-6189</orcidid><orcidid>https://orcid.org/0000-0002-7651-5313</orcidid><orcidid>https://orcid.org/0000-0002-8769-082X</orcidid><orcidid>https://orcid.org/0000-0001-5323-7421</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2024-08, Vol.34 (5), p.1-5
issn 1051-8223
1558-2515
language eng
recordid cdi_ieee_primary_10465249
source IEEE Electronic Library (IEL)
subjects Antiparticles
Antiprotons
Circuits
Damping
Defocusing
Dipoles
Electrical grounding
electrical simulation
Failure modes
FAIR project
Impedance
Inductance
Integrated circuit modeling
Magnetic fields
Magnets
Overheating
Power converters
Quadrupoles
Simulation
SIS100
Software
superconducting magnet
Superconducting magnets
Superconductivity
Transient analysis
transients
Vacuum chambers
Voltage
title Electrical Simulations of the SIS100 Superconducting Dipole and Quadrupole Circuits: Transients, Earthing and Failure Modes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A25%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20Simulations%20of%20the%20SIS100%20Superconducting%20Dipole%20and%20Quadrupole%20Circuits:%20Transients,%20Earthing%20and%20Failure%20Modes&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Szwangruber,%20P.%20B.&rft.date=2024-08-01&rft.volume=34&rft.issue=5&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2024.3375293&rft_dat=%3Cproquest_RIE%3E2973244658%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973244658&rft_id=info:pmid/&rft_ieee_id=10465249&rfr_iscdi=true