Electrical Simulations of the SIS100 Superconducting Dipole and Quadrupole Circuits: Transients, Earthing and Failure Modes
The 100 Tm superconducting synchrotron SIS100 is the main accelerator of the international Facility for Antiproton and Ion Research (FAIR) currently under advanced construction in Darmstadt, Germany. The SIS100 dipole circuit which creates the magnetic field required to bend the beam, consists of 10...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2024-08, Vol.34 (5), p.1-5 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 34 |
creator | Szwangruber, P. B. Raginel, V. Delkov, D. Ravaioli, E. Plyusnin, V. Michna, M. Wilk, A. Woloszyk, M. Freisleben, W. Dziewiecki, M. Ziolko, M. Roux, C. Galla, S. |
description | The 100 Tm superconducting synchrotron SIS100 is the main accelerator of the international Facility for Antiproton and Ion Research (FAIR) currently under advanced construction in Darmstadt, Germany. The SIS100 dipole circuit which creates the magnetic field required to bend the beam, consists of 108 dipoles distributed over six arc sections of the ring. The magnetic field for the beam focusing is generated by three individual quadrupole circuits with total amount of 166 magnets located in both arc and straight sections of the ring. The dipole circuit is powered from two synchronized power converters and will be cycled up to 13.2 kA at 28 kA/s. The dipole magnet chain is not self-protecting. 12 energy extraction resistors are used to protect the superconducting coils and bus-bars against overheating and overvoltage in case of a quench. The largest quadrupole circuit consists of 83 magnets. The nominal current is 10.5 kA cycled up to 22 kA/s. Similarly to dipoles, the quadrupole circuit is not self-protecting. Four energy extraction units are used to discharge the circuit's energy in case of a quench or fast power abort. This work presents a customized Python software tool created to simulate electrical behavior of a superconducting magnet chain. The software is under development at GSI. However, certain modules strongly rely on the approach developed at CERN. The paper contains selected simulations of the SIS100 dipole and defocusing quadrupole circuits. Special attention is drawn to: transient effects during typical operation and during the fast power abort; the damping effect of vacuum chambers; voltage distribution in the circuits and basic failure modes. |
doi_str_mv | 10.1109/TASC.2024.3375293 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10465249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10465249</ieee_id><sourcerecordid>2973244658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-1ea360ff7dcfc117154212c1aabc61a68c320befaec66b3d95ffa3a9b9a371fc3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhoMoWKs_QPCw4NXUnd1sPryV2qpQEUk9h-lm125Jk7ofB_HPm9gePM0MPO878ETRNdAJAC3uV9NyNmGUJRPOM8EKfhKNQIg8ZgLEab9TAXHOGD-PLpzbUgpJnohR9DNvlPTWSGxIaXahQW-61pFOE79RpHwpgVJShr2ysmvrIL1pP8mj2XeNItjW5D1gbcPfOTNWBuPdA1lZbJ1RrXd3ZI7Wb4bQQC_QNMEq8trVyl1GZxobp66Ocxx9LOar2XO8fHt6mU2XsWQ58zEo5CnVOqullgAZiIQBk4C4lilgmkvO6FppVDJN17wuhNbIsVgXyDPQko-j20Pv3nZfQTlfbbtg2_5lxYqMsyRJRd5TcKCk7ZyzSld7a3Zovyug1eC4GhxXg-Pq6LjP3BwyRin1j-8LWVLwX7uweeY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973244658</pqid></control><display><type>article</type><title>Electrical Simulations of the SIS100 Superconducting Dipole and Quadrupole Circuits: Transients, Earthing and Failure Modes</title><source>IEEE Electronic Library (IEL)</source><creator>Szwangruber, P. B. ; Raginel, V. ; Delkov, D. ; Ravaioli, E. ; Plyusnin, V. ; Michna, M. ; Wilk, A. ; Woloszyk, M. ; Freisleben, W. ; Dziewiecki, M. ; Ziolko, M. ; Roux, C. ; Galla, S.</creator><creatorcontrib>Szwangruber, P. B. ; Raginel, V. ; Delkov, D. ; Ravaioli, E. ; Plyusnin, V. ; Michna, M. ; Wilk, A. ; Woloszyk, M. ; Freisleben, W. ; Dziewiecki, M. ; Ziolko, M. ; Roux, C. ; Galla, S.</creatorcontrib><description>The 100 Tm superconducting synchrotron SIS100 is the main accelerator of the international Facility for Antiproton and Ion Research (FAIR) currently under advanced construction in Darmstadt, Germany. The SIS100 dipole circuit which creates the magnetic field required to bend the beam, consists of 108 dipoles distributed over six arc sections of the ring. The magnetic field for the beam focusing is generated by three individual quadrupole circuits with total amount of 166 magnets located in both arc and straight sections of the ring. The dipole circuit is powered from two synchronized power converters and will be cycled up to 13.2 kA at 28 kA/s. The dipole magnet chain is not self-protecting. 12 energy extraction resistors are used to protect the superconducting coils and bus-bars against overheating and overvoltage in case of a quench. The largest quadrupole circuit consists of 83 magnets. The nominal current is 10.5 kA cycled up to 22 kA/s. Similarly to dipoles, the quadrupole circuit is not self-protecting. Four energy extraction units are used to discharge the circuit's energy in case of a quench or fast power abort. This work presents a customized Python software tool created to simulate electrical behavior of a superconducting magnet chain. The software is under development at GSI. However, certain modules strongly rely on the approach developed at CERN. The paper contains selected simulations of the SIS100 dipole and defocusing quadrupole circuits. Special attention is drawn to: transient effects during typical operation and during the fast power abort; the damping effect of vacuum chambers; voltage distribution in the circuits and basic failure modes.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2024.3375293</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antiparticles ; Antiprotons ; Circuits ; Damping ; Defocusing ; Dipoles ; Electrical grounding ; electrical simulation ; Failure modes ; FAIR project ; Impedance ; Inductance ; Integrated circuit modeling ; Magnetic fields ; Magnets ; Overheating ; Power converters ; Quadrupoles ; Simulation ; SIS100 ; Software ; superconducting magnet ; Superconducting magnets ; Superconductivity ; Transient analysis ; transients ; Vacuum chambers ; Voltage</subject><ispartof>IEEE transactions on applied superconductivity, 2024-08, Vol.34 (5), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c282t-1ea360ff7dcfc117154212c1aabc61a68c320befaec66b3d95ffa3a9b9a371fc3</cites><orcidid>0009-0001-8342-6247 ; 0009-0003-9598-1840 ; 0000-0003-0833-100X ; 0000-0003-0962-8585 ; 0000-0002-2179-4925 ; 0009-0005-1071-8360 ; 0000-0002-9683-7459 ; 0000-0001-5313-9450 ; 0000-0002-5265-6189 ; 0000-0002-7651-5313 ; 0000-0002-8769-082X ; 0000-0001-5323-7421</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10465249$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10465249$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Szwangruber, P. B.</creatorcontrib><creatorcontrib>Raginel, V.</creatorcontrib><creatorcontrib>Delkov, D.</creatorcontrib><creatorcontrib>Ravaioli, E.</creatorcontrib><creatorcontrib>Plyusnin, V.</creatorcontrib><creatorcontrib>Michna, M.</creatorcontrib><creatorcontrib>Wilk, A.</creatorcontrib><creatorcontrib>Woloszyk, M.</creatorcontrib><creatorcontrib>Freisleben, W.</creatorcontrib><creatorcontrib>Dziewiecki, M.</creatorcontrib><creatorcontrib>Ziolko, M.</creatorcontrib><creatorcontrib>Roux, C.</creatorcontrib><creatorcontrib>Galla, S.</creatorcontrib><title>Electrical Simulations of the SIS100 Superconducting Dipole and Quadrupole Circuits: Transients, Earthing and Failure Modes</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The 100 Tm superconducting synchrotron SIS100 is the main accelerator of the international Facility for Antiproton and Ion Research (FAIR) currently under advanced construction in Darmstadt, Germany. The SIS100 dipole circuit which creates the magnetic field required to bend the beam, consists of 108 dipoles distributed over six arc sections of the ring. The magnetic field for the beam focusing is generated by three individual quadrupole circuits with total amount of 166 magnets located in both arc and straight sections of the ring. The dipole circuit is powered from two synchronized power converters and will be cycled up to 13.2 kA at 28 kA/s. The dipole magnet chain is not self-protecting. 12 energy extraction resistors are used to protect the superconducting coils and bus-bars against overheating and overvoltage in case of a quench. The largest quadrupole circuit consists of 83 magnets. The nominal current is 10.5 kA cycled up to 22 kA/s. Similarly to dipoles, the quadrupole circuit is not self-protecting. Four energy extraction units are used to discharge the circuit's energy in case of a quench or fast power abort. This work presents a customized Python software tool created to simulate electrical behavior of a superconducting magnet chain. The software is under development at GSI. However, certain modules strongly rely on the approach developed at CERN. The paper contains selected simulations of the SIS100 dipole and defocusing quadrupole circuits. Special attention is drawn to: transient effects during typical operation and during the fast power abort; the damping effect of vacuum chambers; voltage distribution in the circuits and basic failure modes.</description><subject>Antiparticles</subject><subject>Antiprotons</subject><subject>Circuits</subject><subject>Damping</subject><subject>Defocusing</subject><subject>Dipoles</subject><subject>Electrical grounding</subject><subject>electrical simulation</subject><subject>Failure modes</subject><subject>FAIR project</subject><subject>Impedance</subject><subject>Inductance</subject><subject>Integrated circuit modeling</subject><subject>Magnetic fields</subject><subject>Magnets</subject><subject>Overheating</subject><subject>Power converters</subject><subject>Quadrupoles</subject><subject>Simulation</subject><subject>SIS100</subject><subject>Software</subject><subject>superconducting magnet</subject><subject>Superconducting magnets</subject><subject>Superconductivity</subject><subject>Transient analysis</subject><subject>transients</subject><subject>Vacuum chambers</subject><subject>Voltage</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhoMoWKs_QPCw4NXUnd1sPryV2qpQEUk9h-lm125Jk7ofB_HPm9gePM0MPO878ETRNdAJAC3uV9NyNmGUJRPOM8EKfhKNQIg8ZgLEab9TAXHOGD-PLpzbUgpJnohR9DNvlPTWSGxIaXahQW-61pFOE79RpHwpgVJShr2ysmvrIL1pP8mj2XeNItjW5D1gbcPfOTNWBuPdA1lZbJ1RrXd3ZI7Wb4bQQC_QNMEq8trVyl1GZxobp66Ocxx9LOar2XO8fHt6mU2XsWQ58zEo5CnVOqullgAZiIQBk4C4lilgmkvO6FppVDJN17wuhNbIsVgXyDPQko-j20Pv3nZfQTlfbbtg2_5lxYqMsyRJRd5TcKCk7ZyzSld7a3Zovyug1eC4GhxXg-Pq6LjP3BwyRin1j-8LWVLwX7uweeY</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Szwangruber, P. B.</creator><creator>Raginel, V.</creator><creator>Delkov, D.</creator><creator>Ravaioli, E.</creator><creator>Plyusnin, V.</creator><creator>Michna, M.</creator><creator>Wilk, A.</creator><creator>Woloszyk, M.</creator><creator>Freisleben, W.</creator><creator>Dziewiecki, M.</creator><creator>Ziolko, M.</creator><creator>Roux, C.</creator><creator>Galla, S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0001-8342-6247</orcidid><orcidid>https://orcid.org/0009-0003-9598-1840</orcidid><orcidid>https://orcid.org/0000-0003-0833-100X</orcidid><orcidid>https://orcid.org/0000-0003-0962-8585</orcidid><orcidid>https://orcid.org/0000-0002-2179-4925</orcidid><orcidid>https://orcid.org/0009-0005-1071-8360</orcidid><orcidid>https://orcid.org/0000-0002-9683-7459</orcidid><orcidid>https://orcid.org/0000-0001-5313-9450</orcidid><orcidid>https://orcid.org/0000-0002-5265-6189</orcidid><orcidid>https://orcid.org/0000-0002-7651-5313</orcidid><orcidid>https://orcid.org/0000-0002-8769-082X</orcidid><orcidid>https://orcid.org/0000-0001-5323-7421</orcidid></search><sort><creationdate>20240801</creationdate><title>Electrical Simulations of the SIS100 Superconducting Dipole and Quadrupole Circuits: Transients, Earthing and Failure Modes</title><author>Szwangruber, P. B. ; Raginel, V. ; Delkov, D. ; Ravaioli, E. ; Plyusnin, V. ; Michna, M. ; Wilk, A. ; Woloszyk, M. ; Freisleben, W. ; Dziewiecki, M. ; Ziolko, M. ; Roux, C. ; Galla, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-1ea360ff7dcfc117154212c1aabc61a68c320befaec66b3d95ffa3a9b9a371fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antiparticles</topic><topic>Antiprotons</topic><topic>Circuits</topic><topic>Damping</topic><topic>Defocusing</topic><topic>Dipoles</topic><topic>Electrical grounding</topic><topic>electrical simulation</topic><topic>Failure modes</topic><topic>FAIR project</topic><topic>Impedance</topic><topic>Inductance</topic><topic>Integrated circuit modeling</topic><topic>Magnetic fields</topic><topic>Magnets</topic><topic>Overheating</topic><topic>Power converters</topic><topic>Quadrupoles</topic><topic>Simulation</topic><topic>SIS100</topic><topic>Software</topic><topic>superconducting magnet</topic><topic>Superconducting magnets</topic><topic>Superconductivity</topic><topic>Transient analysis</topic><topic>transients</topic><topic>Vacuum chambers</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szwangruber, P. B.</creatorcontrib><creatorcontrib>Raginel, V.</creatorcontrib><creatorcontrib>Delkov, D.</creatorcontrib><creatorcontrib>Ravaioli, E.</creatorcontrib><creatorcontrib>Plyusnin, V.</creatorcontrib><creatorcontrib>Michna, M.</creatorcontrib><creatorcontrib>Wilk, A.</creatorcontrib><creatorcontrib>Woloszyk, M.</creatorcontrib><creatorcontrib>Freisleben, W.</creatorcontrib><creatorcontrib>Dziewiecki, M.</creatorcontrib><creatorcontrib>Ziolko, M.</creatorcontrib><creatorcontrib>Roux, C.</creatorcontrib><creatorcontrib>Galla, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Szwangruber, P. B.</au><au>Raginel, V.</au><au>Delkov, D.</au><au>Ravaioli, E.</au><au>Plyusnin, V.</au><au>Michna, M.</au><au>Wilk, A.</au><au>Woloszyk, M.</au><au>Freisleben, W.</au><au>Dziewiecki, M.</au><au>Ziolko, M.</au><au>Roux, C.</au><au>Galla, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical Simulations of the SIS100 Superconducting Dipole and Quadrupole Circuits: Transients, Earthing and Failure Modes</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>34</volume><issue>5</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The 100 Tm superconducting synchrotron SIS100 is the main accelerator of the international Facility for Antiproton and Ion Research (FAIR) currently under advanced construction in Darmstadt, Germany. The SIS100 dipole circuit which creates the magnetic field required to bend the beam, consists of 108 dipoles distributed over six arc sections of the ring. The magnetic field for the beam focusing is generated by three individual quadrupole circuits with total amount of 166 magnets located in both arc and straight sections of the ring. The dipole circuit is powered from two synchronized power converters and will be cycled up to 13.2 kA at 28 kA/s. The dipole magnet chain is not self-protecting. 12 energy extraction resistors are used to protect the superconducting coils and bus-bars against overheating and overvoltage in case of a quench. The largest quadrupole circuit consists of 83 magnets. The nominal current is 10.5 kA cycled up to 22 kA/s. Similarly to dipoles, the quadrupole circuit is not self-protecting. Four energy extraction units are used to discharge the circuit's energy in case of a quench or fast power abort. This work presents a customized Python software tool created to simulate electrical behavior of a superconducting magnet chain. The software is under development at GSI. However, certain modules strongly rely on the approach developed at CERN. The paper contains selected simulations of the SIS100 dipole and defocusing quadrupole circuits. Special attention is drawn to: transient effects during typical operation and during the fast power abort; the damping effect of vacuum chambers; voltage distribution in the circuits and basic failure modes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2024.3375293</doi><tpages>5</tpages><orcidid>https://orcid.org/0009-0001-8342-6247</orcidid><orcidid>https://orcid.org/0009-0003-9598-1840</orcidid><orcidid>https://orcid.org/0000-0003-0833-100X</orcidid><orcidid>https://orcid.org/0000-0003-0962-8585</orcidid><orcidid>https://orcid.org/0000-0002-2179-4925</orcidid><orcidid>https://orcid.org/0009-0005-1071-8360</orcidid><orcidid>https://orcid.org/0000-0002-9683-7459</orcidid><orcidid>https://orcid.org/0000-0001-5313-9450</orcidid><orcidid>https://orcid.org/0000-0002-5265-6189</orcidid><orcidid>https://orcid.org/0000-0002-7651-5313</orcidid><orcidid>https://orcid.org/0000-0002-8769-082X</orcidid><orcidid>https://orcid.org/0000-0001-5323-7421</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2024-08, Vol.34 (5), p.1-5 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_ieee_primary_10465249 |
source | IEEE Electronic Library (IEL) |
subjects | Antiparticles Antiprotons Circuits Damping Defocusing Dipoles Electrical grounding electrical simulation Failure modes FAIR project Impedance Inductance Integrated circuit modeling Magnetic fields Magnets Overheating Power converters Quadrupoles Simulation SIS100 Software superconducting magnet Superconducting magnets Superconductivity Transient analysis transients Vacuum chambers Voltage |
title | Electrical Simulations of the SIS100 Superconducting Dipole and Quadrupole Circuits: Transients, Earthing and Failure Modes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A25%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20Simulations%20of%20the%20SIS100%20Superconducting%20Dipole%20and%20Quadrupole%20Circuits:%20Transients,%20Earthing%20and%20Failure%20Modes&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Szwangruber,%20P.%20B.&rft.date=2024-08-01&rft.volume=34&rft.issue=5&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2024.3375293&rft_dat=%3Cproquest_RIE%3E2973244658%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973244658&rft_id=info:pmid/&rft_ieee_id=10465249&rfr_iscdi=true |