Multi-Level Label Correction by Distilling Proximate Patterns for Semi-Supervised Semantic Segmentation
Semi-supervised semantic segmentation relieves the reliance on large-scale labeled data by leveraging unlabeled data. Recent semi-supervised semantic segmentation approaches mainly resort to pseudo-labeling methods to exploit unlabeled data. However, unreliable pseudo-labeling can undermine the semi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2024, Vol.26, p.8077-8087 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8087 |
---|---|
container_issue | |
container_start_page | 8077 |
container_title | IEEE transactions on multimedia |
container_volume | 26 |
creator | Xiao, Hui Hong, Yuting Dong, Li Yan, Diqun Xiong, Junjie Zhuang, Jiayan Liang, Dongtai Peng, Chengbin |
description | Semi-supervised semantic segmentation relieves the reliance on large-scale labeled data by leveraging unlabeled data. Recent semi-supervised semantic segmentation approaches mainly resort to pseudo-labeling methods to exploit unlabeled data. However, unreliable pseudo-labeling can undermine the semi-supervision processes. In this paper, we propose an algorithm called Multi-Level Label Correction (MLLC), which aims to use graph neural networks to capture structural relationships in Semantic-Level Graphs (SLGs) and Class-Level Graphs (CLGs) to rectify erroneous pseudo-labels. Specifically, SLGs represent semantic affinities between pairs of pixel features, and CLGs describe classification consistencies between pairs of pixel labels. With the support of proximate pattern information from graphs, MLLC can rectify incorrectly predicted pseudo-labels and can facilitate discriminative feature representations. We design an end-to-end network to train and perform this effective label corrections mechanism. Experiments demonstrate that MLLC can significantly improve supervised baselines and outperforms state-of-the-art approaches in different scenarios on Cityscapes and PASCAL VOC 2012 datasets. Specifically, MLLC improves the supervised baseline by at least 5% and 2% with DeepLabV2 and DeepLabV3+ respectively under different partition protocols. |
doi_str_mv | 10.1109/TMM.2024.3374594 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10462533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10462533</ieee_id><sourcerecordid>10_1109_TMM_2024_3374594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-e3716560d66de8b3dc881c69c068cc803a5dc0af14b6f6776bf19852f03b6f723</originalsourceid><addsrcrecordid>eNpNkEFPwzAMhSMEEmNw58Chf6DDSZqkPaIBA6kTkzbOVZo6U1DXTkk2sX9Pq-3AxX62_J6sj5BHCjNKoXjeLJczBiybca4yUWRXZEKLjKYASl0PWjBIC0bhltyF8ANAMwFqQrbLQxtdWuIR26TU9VDnvfdoouu7pD4lry5E17au2yYr3_-6nY6YrHSM6LuQ2N4na9y5dH3Yoz-6gM046y46M4jtDruox6h7cmN1G_Dh0qfk-_1tM_9Iy6_F5_ylTA0TRUyRKyqFhEbKBvOaNybPqZGFAZkbkwPXojGgLc1qaaVSsra0yAWzwIeFYnxK4JxrfB-CR1vt_fCzP1UUqhFUNYCqRlDVBdRgeTpbHCL-O88kE5zzP04MZiE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-Level Label Correction by Distilling Proximate Patterns for Semi-Supervised Semantic Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Xiao, Hui ; Hong, Yuting ; Dong, Li ; Yan, Diqun ; Xiong, Junjie ; Zhuang, Jiayan ; Liang, Dongtai ; Peng, Chengbin</creator><creatorcontrib>Xiao, Hui ; Hong, Yuting ; Dong, Li ; Yan, Diqun ; Xiong, Junjie ; Zhuang, Jiayan ; Liang, Dongtai ; Peng, Chengbin</creatorcontrib><description>Semi-supervised semantic segmentation relieves the reliance on large-scale labeled data by leveraging unlabeled data. Recent semi-supervised semantic segmentation approaches mainly resort to pseudo-labeling methods to exploit unlabeled data. However, unreliable pseudo-labeling can undermine the semi-supervision processes. In this paper, we propose an algorithm called Multi-Level Label Correction (MLLC), which aims to use graph neural networks to capture structural relationships in Semantic-Level Graphs (SLGs) and Class-Level Graphs (CLGs) to rectify erroneous pseudo-labels. Specifically, SLGs represent semantic affinities between pairs of pixel features, and CLGs describe classification consistencies between pairs of pixel labels. With the support of proximate pattern information from graphs, MLLC can rectify incorrectly predicted pseudo-labels and can facilitate discriminative feature representations. We design an end-to-end network to train and perform this effective label corrections mechanism. Experiments demonstrate that MLLC can significantly improve supervised baselines and outperforms state-of-the-art approaches in different scenarios on Cityscapes and PASCAL VOC 2012 datasets. Specifically, MLLC improves the supervised baseline by at least 5% and 2% with DeepLabV2 and DeepLabV3+ respectively under different partition protocols.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2024.3374594</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data models ; graph convolution ; Noise measurement ; Predictive models ; pseudo label ; Semantic segmentation ; Semantics ; semi-supervised learning ; Semisupervised learning ; Training</subject><ispartof>IEEE transactions on multimedia, 2024, Vol.26, p.8077-8087</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c259t-e3716560d66de8b3dc881c69c068cc803a5dc0af14b6f6776bf19852f03b6f723</cites><orcidid>0000-0002-6055-2814 ; 0000-0002-1965-7286 ; 0000-0002-7445-2638 ; 0000-0002-1866-6746 ; 0000-0002-8350-6116 ; 0000-0003-2002-8249 ; 0000-0002-1067-4119 ; 0000-0002-5241-7276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10462533$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10462533$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiao, Hui</creatorcontrib><creatorcontrib>Hong, Yuting</creatorcontrib><creatorcontrib>Dong, Li</creatorcontrib><creatorcontrib>Yan, Diqun</creatorcontrib><creatorcontrib>Xiong, Junjie</creatorcontrib><creatorcontrib>Zhuang, Jiayan</creatorcontrib><creatorcontrib>Liang, Dongtai</creatorcontrib><creatorcontrib>Peng, Chengbin</creatorcontrib><title>Multi-Level Label Correction by Distilling Proximate Patterns for Semi-Supervised Semantic Segmentation</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Semi-supervised semantic segmentation relieves the reliance on large-scale labeled data by leveraging unlabeled data. Recent semi-supervised semantic segmentation approaches mainly resort to pseudo-labeling methods to exploit unlabeled data. However, unreliable pseudo-labeling can undermine the semi-supervision processes. In this paper, we propose an algorithm called Multi-Level Label Correction (MLLC), which aims to use graph neural networks to capture structural relationships in Semantic-Level Graphs (SLGs) and Class-Level Graphs (CLGs) to rectify erroneous pseudo-labels. Specifically, SLGs represent semantic affinities between pairs of pixel features, and CLGs describe classification consistencies between pairs of pixel labels. With the support of proximate pattern information from graphs, MLLC can rectify incorrectly predicted pseudo-labels and can facilitate discriminative feature representations. We design an end-to-end network to train and perform this effective label corrections mechanism. Experiments demonstrate that MLLC can significantly improve supervised baselines and outperforms state-of-the-art approaches in different scenarios on Cityscapes and PASCAL VOC 2012 datasets. Specifically, MLLC improves the supervised baseline by at least 5% and 2% with DeepLabV2 and DeepLabV3+ respectively under different partition protocols.</description><subject>Data models</subject><subject>graph convolution</subject><subject>Noise measurement</subject><subject>Predictive models</subject><subject>pseudo label</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>semi-supervised learning</subject><subject>Semisupervised learning</subject><subject>Training</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFPwzAMhSMEEmNw58Chf6DDSZqkPaIBA6kTkzbOVZo6U1DXTkk2sX9Pq-3AxX62_J6sj5BHCjNKoXjeLJczBiybca4yUWRXZEKLjKYASl0PWjBIC0bhltyF8ANAMwFqQrbLQxtdWuIR26TU9VDnvfdoouu7pD4lry5E17au2yYr3_-6nY6YrHSM6LuQ2N4na9y5dH3Yoz-6gM046y46M4jtDruox6h7cmN1G_Dh0qfk-_1tM_9Iy6_F5_ylTA0TRUyRKyqFhEbKBvOaNybPqZGFAZkbkwPXojGgLc1qaaVSsra0yAWzwIeFYnxK4JxrfB-CR1vt_fCzP1UUqhFUNYCqRlDVBdRgeTpbHCL-O88kE5zzP04MZiE</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Xiao, Hui</creator><creator>Hong, Yuting</creator><creator>Dong, Li</creator><creator>Yan, Diqun</creator><creator>Xiong, Junjie</creator><creator>Zhuang, Jiayan</creator><creator>Liang, Dongtai</creator><creator>Peng, Chengbin</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6055-2814</orcidid><orcidid>https://orcid.org/0000-0002-1965-7286</orcidid><orcidid>https://orcid.org/0000-0002-7445-2638</orcidid><orcidid>https://orcid.org/0000-0002-1866-6746</orcidid><orcidid>https://orcid.org/0000-0002-8350-6116</orcidid><orcidid>https://orcid.org/0000-0003-2002-8249</orcidid><orcidid>https://orcid.org/0000-0002-1067-4119</orcidid><orcidid>https://orcid.org/0000-0002-5241-7276</orcidid></search><sort><creationdate>2024</creationdate><title>Multi-Level Label Correction by Distilling Proximate Patterns for Semi-Supervised Semantic Segmentation</title><author>Xiao, Hui ; Hong, Yuting ; Dong, Li ; Yan, Diqun ; Xiong, Junjie ; Zhuang, Jiayan ; Liang, Dongtai ; Peng, Chengbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-e3716560d66de8b3dc881c69c068cc803a5dc0af14b6f6776bf19852f03b6f723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data models</topic><topic>graph convolution</topic><topic>Noise measurement</topic><topic>Predictive models</topic><topic>pseudo label</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>semi-supervised learning</topic><topic>Semisupervised learning</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Hui</creatorcontrib><creatorcontrib>Hong, Yuting</creatorcontrib><creatorcontrib>Dong, Li</creatorcontrib><creatorcontrib>Yan, Diqun</creatorcontrib><creatorcontrib>Xiong, Junjie</creatorcontrib><creatorcontrib>Zhuang, Jiayan</creatorcontrib><creatorcontrib>Liang, Dongtai</creatorcontrib><creatorcontrib>Peng, Chengbin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao, Hui</au><au>Hong, Yuting</au><au>Dong, Li</au><au>Yan, Diqun</au><au>Xiong, Junjie</au><au>Zhuang, Jiayan</au><au>Liang, Dongtai</au><au>Peng, Chengbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Level Label Correction by Distilling Proximate Patterns for Semi-Supervised Semantic Segmentation</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2024</date><risdate>2024</risdate><volume>26</volume><spage>8077</spage><epage>8087</epage><pages>8077-8087</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Semi-supervised semantic segmentation relieves the reliance on large-scale labeled data by leveraging unlabeled data. Recent semi-supervised semantic segmentation approaches mainly resort to pseudo-labeling methods to exploit unlabeled data. However, unreliable pseudo-labeling can undermine the semi-supervision processes. In this paper, we propose an algorithm called Multi-Level Label Correction (MLLC), which aims to use graph neural networks to capture structural relationships in Semantic-Level Graphs (SLGs) and Class-Level Graphs (CLGs) to rectify erroneous pseudo-labels. Specifically, SLGs represent semantic affinities between pairs of pixel features, and CLGs describe classification consistencies between pairs of pixel labels. With the support of proximate pattern information from graphs, MLLC can rectify incorrectly predicted pseudo-labels and can facilitate discriminative feature representations. We design an end-to-end network to train and perform this effective label corrections mechanism. Experiments demonstrate that MLLC can significantly improve supervised baselines and outperforms state-of-the-art approaches in different scenarios on Cityscapes and PASCAL VOC 2012 datasets. Specifically, MLLC improves the supervised baseline by at least 5% and 2% with DeepLabV2 and DeepLabV3+ respectively under different partition protocols.</abstract><pub>IEEE</pub><doi>10.1109/TMM.2024.3374594</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6055-2814</orcidid><orcidid>https://orcid.org/0000-0002-1965-7286</orcidid><orcidid>https://orcid.org/0000-0002-7445-2638</orcidid><orcidid>https://orcid.org/0000-0002-1866-6746</orcidid><orcidid>https://orcid.org/0000-0002-8350-6116</orcidid><orcidid>https://orcid.org/0000-0003-2002-8249</orcidid><orcidid>https://orcid.org/0000-0002-1067-4119</orcidid><orcidid>https://orcid.org/0000-0002-5241-7276</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2024, Vol.26, p.8077-8087 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_ieee_primary_10462533 |
source | IEEE Electronic Library (IEL) |
subjects | Data models graph convolution Noise measurement Predictive models pseudo label Semantic segmentation Semantics semi-supervised learning Semisupervised learning Training |
title | Multi-Level Label Correction by Distilling Proximate Patterns for Semi-Supervised Semantic Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A48%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Level%20Label%20Correction%20by%20Distilling%20Proximate%20Patterns%20for%20Semi-Supervised%20Semantic%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Xiao,%20Hui&rft.date=2024&rft.volume=26&rft.spage=8077&rft.epage=8087&rft.pages=8077-8087&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2024.3374594&rft_dat=%3Ccrossref_RIE%3E10_1109_TMM_2024_3374594%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10462533&rfr_iscdi=true |