Multi-Level Label Correction by Distilling Proximate Patterns for Semi-Supervised Semantic Segmentation

Semi-supervised semantic segmentation relieves the reliance on large-scale labeled data by leveraging unlabeled data. Recent semi-supervised semantic segmentation approaches mainly resort to pseudo-labeling methods to exploit unlabeled data. However, unreliable pseudo-labeling can undermine the semi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2024, Vol.26, p.8077-8087
Hauptverfasser: Xiao, Hui, Hong, Yuting, Dong, Li, Yan, Diqun, Xiong, Junjie, Zhuang, Jiayan, Liang, Dongtai, Peng, Chengbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8087
container_issue
container_start_page 8077
container_title IEEE transactions on multimedia
container_volume 26
creator Xiao, Hui
Hong, Yuting
Dong, Li
Yan, Diqun
Xiong, Junjie
Zhuang, Jiayan
Liang, Dongtai
Peng, Chengbin
description Semi-supervised semantic segmentation relieves the reliance on large-scale labeled data by leveraging unlabeled data. Recent semi-supervised semantic segmentation approaches mainly resort to pseudo-labeling methods to exploit unlabeled data. However, unreliable pseudo-labeling can undermine the semi-supervision processes. In this paper, we propose an algorithm called Multi-Level Label Correction (MLLC), which aims to use graph neural networks to capture structural relationships in Semantic-Level Graphs (SLGs) and Class-Level Graphs (CLGs) to rectify erroneous pseudo-labels. Specifically, SLGs represent semantic affinities between pairs of pixel features, and CLGs describe classification consistencies between pairs of pixel labels. With the support of proximate pattern information from graphs, MLLC can rectify incorrectly predicted pseudo-labels and can facilitate discriminative feature representations. We design an end-to-end network to train and perform this effective label corrections mechanism. Experiments demonstrate that MLLC can significantly improve supervised baselines and outperforms state-of-the-art approaches in different scenarios on Cityscapes and PASCAL VOC 2012 datasets. Specifically, MLLC improves the supervised baseline by at least 5% and 2% with DeepLabV2 and DeepLabV3+ respectively under different partition protocols.
doi_str_mv 10.1109/TMM.2024.3374594
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10462533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10462533</ieee_id><sourcerecordid>10_1109_TMM_2024_3374594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-e3716560d66de8b3dc881c69c068cc803a5dc0af14b6f6776bf19852f03b6f723</originalsourceid><addsrcrecordid>eNpNkEFPwzAMhSMEEmNw58Chf6DDSZqkPaIBA6kTkzbOVZo6U1DXTkk2sX9Pq-3AxX62_J6sj5BHCjNKoXjeLJczBiybca4yUWRXZEKLjKYASl0PWjBIC0bhltyF8ANAMwFqQrbLQxtdWuIR26TU9VDnvfdoouu7pD4lry5E17au2yYr3_-6nY6YrHSM6LuQ2N4na9y5dH3Yoz-6gM046y46M4jtDruox6h7cmN1G_Dh0qfk-_1tM_9Iy6_F5_ylTA0TRUyRKyqFhEbKBvOaNybPqZGFAZkbkwPXojGgLc1qaaVSsra0yAWzwIeFYnxK4JxrfB-CR1vt_fCzP1UUqhFUNYCqRlDVBdRgeTpbHCL-O88kE5zzP04MZiE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-Level Label Correction by Distilling Proximate Patterns for Semi-Supervised Semantic Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Xiao, Hui ; Hong, Yuting ; Dong, Li ; Yan, Diqun ; Xiong, Junjie ; Zhuang, Jiayan ; Liang, Dongtai ; Peng, Chengbin</creator><creatorcontrib>Xiao, Hui ; Hong, Yuting ; Dong, Li ; Yan, Diqun ; Xiong, Junjie ; Zhuang, Jiayan ; Liang, Dongtai ; Peng, Chengbin</creatorcontrib><description>Semi-supervised semantic segmentation relieves the reliance on large-scale labeled data by leveraging unlabeled data. Recent semi-supervised semantic segmentation approaches mainly resort to pseudo-labeling methods to exploit unlabeled data. However, unreliable pseudo-labeling can undermine the semi-supervision processes. In this paper, we propose an algorithm called Multi-Level Label Correction (MLLC), which aims to use graph neural networks to capture structural relationships in Semantic-Level Graphs (SLGs) and Class-Level Graphs (CLGs) to rectify erroneous pseudo-labels. Specifically, SLGs represent semantic affinities between pairs of pixel features, and CLGs describe classification consistencies between pairs of pixel labels. With the support of proximate pattern information from graphs, MLLC can rectify incorrectly predicted pseudo-labels and can facilitate discriminative feature representations. We design an end-to-end network to train and perform this effective label corrections mechanism. Experiments demonstrate that MLLC can significantly improve supervised baselines and outperforms state-of-the-art approaches in different scenarios on Cityscapes and PASCAL VOC 2012 datasets. Specifically, MLLC improves the supervised baseline by at least 5% and 2% with DeepLabV2 and DeepLabV3+ respectively under different partition protocols.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2024.3374594</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data models ; graph convolution ; Noise measurement ; Predictive models ; pseudo label ; Semantic segmentation ; Semantics ; semi-supervised learning ; Semisupervised learning ; Training</subject><ispartof>IEEE transactions on multimedia, 2024, Vol.26, p.8077-8087</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c259t-e3716560d66de8b3dc881c69c068cc803a5dc0af14b6f6776bf19852f03b6f723</cites><orcidid>0000-0002-6055-2814 ; 0000-0002-1965-7286 ; 0000-0002-7445-2638 ; 0000-0002-1866-6746 ; 0000-0002-8350-6116 ; 0000-0003-2002-8249 ; 0000-0002-1067-4119 ; 0000-0002-5241-7276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10462533$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10462533$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiao, Hui</creatorcontrib><creatorcontrib>Hong, Yuting</creatorcontrib><creatorcontrib>Dong, Li</creatorcontrib><creatorcontrib>Yan, Diqun</creatorcontrib><creatorcontrib>Xiong, Junjie</creatorcontrib><creatorcontrib>Zhuang, Jiayan</creatorcontrib><creatorcontrib>Liang, Dongtai</creatorcontrib><creatorcontrib>Peng, Chengbin</creatorcontrib><title>Multi-Level Label Correction by Distilling Proximate Patterns for Semi-Supervised Semantic Segmentation</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Semi-supervised semantic segmentation relieves the reliance on large-scale labeled data by leveraging unlabeled data. Recent semi-supervised semantic segmentation approaches mainly resort to pseudo-labeling methods to exploit unlabeled data. However, unreliable pseudo-labeling can undermine the semi-supervision processes. In this paper, we propose an algorithm called Multi-Level Label Correction (MLLC), which aims to use graph neural networks to capture structural relationships in Semantic-Level Graphs (SLGs) and Class-Level Graphs (CLGs) to rectify erroneous pseudo-labels. Specifically, SLGs represent semantic affinities between pairs of pixel features, and CLGs describe classification consistencies between pairs of pixel labels. With the support of proximate pattern information from graphs, MLLC can rectify incorrectly predicted pseudo-labels and can facilitate discriminative feature representations. We design an end-to-end network to train and perform this effective label corrections mechanism. Experiments demonstrate that MLLC can significantly improve supervised baselines and outperforms state-of-the-art approaches in different scenarios on Cityscapes and PASCAL VOC 2012 datasets. Specifically, MLLC improves the supervised baseline by at least 5% and 2% with DeepLabV2 and DeepLabV3+ respectively under different partition protocols.</description><subject>Data models</subject><subject>graph convolution</subject><subject>Noise measurement</subject><subject>Predictive models</subject><subject>pseudo label</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>semi-supervised learning</subject><subject>Semisupervised learning</subject><subject>Training</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFPwzAMhSMEEmNw58Chf6DDSZqkPaIBA6kTkzbOVZo6U1DXTkk2sX9Pq-3AxX62_J6sj5BHCjNKoXjeLJczBiybca4yUWRXZEKLjKYASl0PWjBIC0bhltyF8ANAMwFqQrbLQxtdWuIR26TU9VDnvfdoouu7pD4lry5E17au2yYr3_-6nY6YrHSM6LuQ2N4na9y5dH3Yoz-6gM046y46M4jtDruox6h7cmN1G_Dh0qfk-_1tM_9Iy6_F5_ylTA0TRUyRKyqFhEbKBvOaNybPqZGFAZkbkwPXojGgLc1qaaVSsra0yAWzwIeFYnxK4JxrfB-CR1vt_fCzP1UUqhFUNYCqRlDVBdRgeTpbHCL-O88kE5zzP04MZiE</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Xiao, Hui</creator><creator>Hong, Yuting</creator><creator>Dong, Li</creator><creator>Yan, Diqun</creator><creator>Xiong, Junjie</creator><creator>Zhuang, Jiayan</creator><creator>Liang, Dongtai</creator><creator>Peng, Chengbin</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6055-2814</orcidid><orcidid>https://orcid.org/0000-0002-1965-7286</orcidid><orcidid>https://orcid.org/0000-0002-7445-2638</orcidid><orcidid>https://orcid.org/0000-0002-1866-6746</orcidid><orcidid>https://orcid.org/0000-0002-8350-6116</orcidid><orcidid>https://orcid.org/0000-0003-2002-8249</orcidid><orcidid>https://orcid.org/0000-0002-1067-4119</orcidid><orcidid>https://orcid.org/0000-0002-5241-7276</orcidid></search><sort><creationdate>2024</creationdate><title>Multi-Level Label Correction by Distilling Proximate Patterns for Semi-Supervised Semantic Segmentation</title><author>Xiao, Hui ; Hong, Yuting ; Dong, Li ; Yan, Diqun ; Xiong, Junjie ; Zhuang, Jiayan ; Liang, Dongtai ; Peng, Chengbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-e3716560d66de8b3dc881c69c068cc803a5dc0af14b6f6776bf19852f03b6f723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data models</topic><topic>graph convolution</topic><topic>Noise measurement</topic><topic>Predictive models</topic><topic>pseudo label</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>semi-supervised learning</topic><topic>Semisupervised learning</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Hui</creatorcontrib><creatorcontrib>Hong, Yuting</creatorcontrib><creatorcontrib>Dong, Li</creatorcontrib><creatorcontrib>Yan, Diqun</creatorcontrib><creatorcontrib>Xiong, Junjie</creatorcontrib><creatorcontrib>Zhuang, Jiayan</creatorcontrib><creatorcontrib>Liang, Dongtai</creatorcontrib><creatorcontrib>Peng, Chengbin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao, Hui</au><au>Hong, Yuting</au><au>Dong, Li</au><au>Yan, Diqun</au><au>Xiong, Junjie</au><au>Zhuang, Jiayan</au><au>Liang, Dongtai</au><au>Peng, Chengbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Level Label Correction by Distilling Proximate Patterns for Semi-Supervised Semantic Segmentation</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2024</date><risdate>2024</risdate><volume>26</volume><spage>8077</spage><epage>8087</epage><pages>8077-8087</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Semi-supervised semantic segmentation relieves the reliance on large-scale labeled data by leveraging unlabeled data. Recent semi-supervised semantic segmentation approaches mainly resort to pseudo-labeling methods to exploit unlabeled data. However, unreliable pseudo-labeling can undermine the semi-supervision processes. In this paper, we propose an algorithm called Multi-Level Label Correction (MLLC), which aims to use graph neural networks to capture structural relationships in Semantic-Level Graphs (SLGs) and Class-Level Graphs (CLGs) to rectify erroneous pseudo-labels. Specifically, SLGs represent semantic affinities between pairs of pixel features, and CLGs describe classification consistencies between pairs of pixel labels. With the support of proximate pattern information from graphs, MLLC can rectify incorrectly predicted pseudo-labels and can facilitate discriminative feature representations. We design an end-to-end network to train and perform this effective label corrections mechanism. Experiments demonstrate that MLLC can significantly improve supervised baselines and outperforms state-of-the-art approaches in different scenarios on Cityscapes and PASCAL VOC 2012 datasets. Specifically, MLLC improves the supervised baseline by at least 5% and 2% with DeepLabV2 and DeepLabV3+ respectively under different partition protocols.</abstract><pub>IEEE</pub><doi>10.1109/TMM.2024.3374594</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6055-2814</orcidid><orcidid>https://orcid.org/0000-0002-1965-7286</orcidid><orcidid>https://orcid.org/0000-0002-7445-2638</orcidid><orcidid>https://orcid.org/0000-0002-1866-6746</orcidid><orcidid>https://orcid.org/0000-0002-8350-6116</orcidid><orcidid>https://orcid.org/0000-0003-2002-8249</orcidid><orcidid>https://orcid.org/0000-0002-1067-4119</orcidid><orcidid>https://orcid.org/0000-0002-5241-7276</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2024, Vol.26, p.8077-8087
issn 1520-9210
1941-0077
language eng
recordid cdi_ieee_primary_10462533
source IEEE Electronic Library (IEL)
subjects Data models
graph convolution
Noise measurement
Predictive models
pseudo label
Semantic segmentation
Semantics
semi-supervised learning
Semisupervised learning
Training
title Multi-Level Label Correction by Distilling Proximate Patterns for Semi-Supervised Semantic Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A48%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Level%20Label%20Correction%20by%20Distilling%20Proximate%20Patterns%20for%20Semi-Supervised%20Semantic%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Xiao,%20Hui&rft.date=2024&rft.volume=26&rft.spage=8077&rft.epage=8087&rft.pages=8077-8087&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2024.3374594&rft_dat=%3Ccrossref_RIE%3E10_1109_TMM_2024_3374594%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10462533&rfr_iscdi=true