Building a Multilevel Inflection Handling Stemmer to Improve Search Effectiveness for Urdu Language

Stemming is an essential step in various Natural Language Processing (NLP) applications and is used to reduce different variants of the query words to a standard form to avoid the vocabulary mismatch issue in Information Retrieval (IR) systems. Due to specific grammatical rules and complex morpholog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.39313-39329
Hauptverfasser: Jabbar, Abdul, Iqbal, Sajid, Alaulamie, Abdullah Abdulrhman, Ilahi, Manzoor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39329
container_issue
container_start_page 39313
container_title IEEE access
container_volume 12
creator Jabbar, Abdul
Iqbal, Sajid
Alaulamie, Abdullah Abdulrhman
Ilahi, Manzoor
description Stemming is an essential step in various Natural Language Processing (NLP) applications and is used to reduce different variants of the query words to a standard form to avoid the vocabulary mismatch issue in Information Retrieval (IR) systems. Due to specific grammatical rules and complex morphological structures, finding an effective stemming algorithm in Urdu is a challenging task. Although, several stemming algorithms have been proposed for the Urdu text stemming; however, none of them extract the stem from multilevel inflected forms. In this context, according to the best of our knowledge, this is a first effort towards the proposition and evaluation of a novel Urdu Text Stemmer (UTS) that can deal with multi-level inflection forms in Urdu text. The experimental evaluation of the proposed scheme has been conducted on the text-based and word-based custom-developed corpus. The proposed stemming technique is rigorously evaluated and compared with state-of-the-art stemming algorithms. Experimental results demonstrate that UTS outperforms existing Urdu stemmers and achieves an accuracy of 94.92% and 91.8% on word corpus and text corpus, respectively. We also evaluated our proposed system in an Information Retrieval application for Urdu, using the Collection for Urdu Retrieval Evaluation (CURE) dataset. Our approach for information retrieval outperformed and improved both recall and precision metrics.
doi_str_mv 10.1109/ACCESS.2024.3373714
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10460562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10460562</ieee_id><doaj_id>oai_doaj_org_article_207ece6951a341cbbd00acd0af9a360c</doaj_id><sourcerecordid>2969056459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8b4b2065dab184307625c10566f1f6dfbeb872009ab3a2cfb82f10ecef6d5a5f3</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIVNAvgIMlzi1-xE5yLFWhlYo4lJ6ttbMuqdK4OEkl_h6XIIQva-3OzD4mSe4YnTJGi8fZfL7YbKac8nQqRCYyll4kI85UMRFSqMt__-tk3LZ7Gl8eUzIbJfapr-qyanYEyGtfd1WNJ6zJqnE12q7yDVlCU9ZnwKbDwwED6TxZHY7Bn5BsEIL9IAvnzuATNti2xPlAtqHsyRqaXQ87vE2uHNQtjn_jTbJ9XrzPl5P128tqPltPrJBFN8lNajhVsgTD8lTQTHFpGZVKOeZU6QyaPOOUFmAEcOtMzh2jaDEWJUgnbpLVoFt62OtjqA4QvrSHSv8kfNhpCF1la9ScZpEYT8BApMwaU1IKtqTgChCK2qj1MGjFRT97bDu9931o4viaF6qIU6WyiCgxoGzwbRvQ_XVlVJ_N0YM5-myO_jUnsu4HVoWI_xipirJcfAMc8Ivk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969056459</pqid></control><display><type>article</type><title>Building a Multilevel Inflection Handling Stemmer to Improve Search Effectiveness for Urdu Language</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jabbar, Abdul ; Iqbal, Sajid ; Alaulamie, Abdullah Abdulrhman ; Ilahi, Manzoor</creator><creatorcontrib>Jabbar, Abdul ; Iqbal, Sajid ; Alaulamie, Abdullah Abdulrhman ; Ilahi, Manzoor</creatorcontrib><description>Stemming is an essential step in various Natural Language Processing (NLP) applications and is used to reduce different variants of the query words to a standard form to avoid the vocabulary mismatch issue in Information Retrieval (IR) systems. Due to specific grammatical rules and complex morphological structures, finding an effective stemming algorithm in Urdu is a challenging task. Although, several stemming algorithms have been proposed for the Urdu text stemming; however, none of them extract the stem from multilevel inflected forms. In this context, according to the best of our knowledge, this is a first effort towards the proposition and evaluation of a novel Urdu Text Stemmer (UTS) that can deal with multi-level inflection forms in Urdu text. The experimental evaluation of the proposed scheme has been conducted on the text-based and word-based custom-developed corpus. The proposed stemming technique is rigorously evaluated and compared with state-of-the-art stemming algorithms. Experimental results demonstrate that UTS outperforms existing Urdu stemmers and achieves an accuracy of 94.92% and 91.8% on word corpus and text corpus, respectively. We also evaluated our proposed system in an Information Retrieval application for Urdu, using the Collection for Urdu Retrieval Evaluation (CURE) dataset. Our approach for information retrieval outperformed and improved both recall and precision metrics.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3373714</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Data models ; Information analysis ; Information retrieval ; lemmatizer ; Measurement techniques ; Natural language processing ; Stemmer ; Text mining ; Urdu stemmer ; Vocabulary ; Words (language)</subject><ispartof>IEEE access, 2024, Vol.12, p.39313-39329</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-8b4b2065dab184307625c10566f1f6dfbeb872009ab3a2cfb82f10ecef6d5a5f3</cites><orcidid>0000-0003-0093-6186 ; 0000-0001-8657-1282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10460562$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Jabbar, Abdul</creatorcontrib><creatorcontrib>Iqbal, Sajid</creatorcontrib><creatorcontrib>Alaulamie, Abdullah Abdulrhman</creatorcontrib><creatorcontrib>Ilahi, Manzoor</creatorcontrib><title>Building a Multilevel Inflection Handling Stemmer to Improve Search Effectiveness for Urdu Language</title><title>IEEE access</title><addtitle>Access</addtitle><description>Stemming is an essential step in various Natural Language Processing (NLP) applications and is used to reduce different variants of the query words to a standard form to avoid the vocabulary mismatch issue in Information Retrieval (IR) systems. Due to specific grammatical rules and complex morphological structures, finding an effective stemming algorithm in Urdu is a challenging task. Although, several stemming algorithms have been proposed for the Urdu text stemming; however, none of them extract the stem from multilevel inflected forms. In this context, according to the best of our knowledge, this is a first effort towards the proposition and evaluation of a novel Urdu Text Stemmer (UTS) that can deal with multi-level inflection forms in Urdu text. The experimental evaluation of the proposed scheme has been conducted on the text-based and word-based custom-developed corpus. The proposed stemming technique is rigorously evaluated and compared with state-of-the-art stemming algorithms. Experimental results demonstrate that UTS outperforms existing Urdu stemmers and achieves an accuracy of 94.92% and 91.8% on word corpus and text corpus, respectively. We also evaluated our proposed system in an Information Retrieval application for Urdu, using the Collection for Urdu Retrieval Evaluation (CURE) dataset. Our approach for information retrieval outperformed and improved both recall and precision metrics.</description><subject>Algorithms</subject><subject>Data models</subject><subject>Information analysis</subject><subject>Information retrieval</subject><subject>lemmatizer</subject><subject>Measurement techniques</subject><subject>Natural language processing</subject><subject>Stemmer</subject><subject>Text mining</subject><subject>Urdu stemmer</subject><subject>Vocabulary</subject><subject>Words (language)</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIVNAvgIMlzi1-xE5yLFWhlYo4lJ6ttbMuqdK4OEkl_h6XIIQva-3OzD4mSe4YnTJGi8fZfL7YbKac8nQqRCYyll4kI85UMRFSqMt__-tk3LZ7Gl8eUzIbJfapr-qyanYEyGtfd1WNJ6zJqnE12q7yDVlCU9ZnwKbDwwED6TxZHY7Bn5BsEIL9IAvnzuATNti2xPlAtqHsyRqaXQ87vE2uHNQtjn_jTbJ9XrzPl5P128tqPltPrJBFN8lNajhVsgTD8lTQTHFpGZVKOeZU6QyaPOOUFmAEcOtMzh2jaDEWJUgnbpLVoFt62OtjqA4QvrSHSv8kfNhpCF1la9ScZpEYT8BApMwaU1IKtqTgChCK2qj1MGjFRT97bDu9931o4viaF6qIU6WyiCgxoGzwbRvQ_XVlVJ_N0YM5-myO_jUnsu4HVoWI_xipirJcfAMc8Ivk</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Jabbar, Abdul</creator><creator>Iqbal, Sajid</creator><creator>Alaulamie, Abdullah Abdulrhman</creator><creator>Ilahi, Manzoor</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0093-6186</orcidid><orcidid>https://orcid.org/0000-0001-8657-1282</orcidid></search><sort><creationdate>2024</creationdate><title>Building a Multilevel Inflection Handling Stemmer to Improve Search Effectiveness for Urdu Language</title><author>Jabbar, Abdul ; Iqbal, Sajid ; Alaulamie, Abdullah Abdulrhman ; Ilahi, Manzoor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8b4b2065dab184307625c10566f1f6dfbeb872009ab3a2cfb82f10ecef6d5a5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Data models</topic><topic>Information analysis</topic><topic>Information retrieval</topic><topic>lemmatizer</topic><topic>Measurement techniques</topic><topic>Natural language processing</topic><topic>Stemmer</topic><topic>Text mining</topic><topic>Urdu stemmer</topic><topic>Vocabulary</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jabbar, Abdul</creatorcontrib><creatorcontrib>Iqbal, Sajid</creatorcontrib><creatorcontrib>Alaulamie, Abdullah Abdulrhman</creatorcontrib><creatorcontrib>Ilahi, Manzoor</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jabbar, Abdul</au><au>Iqbal, Sajid</au><au>Alaulamie, Abdullah Abdulrhman</au><au>Ilahi, Manzoor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Building a Multilevel Inflection Handling Stemmer to Improve Search Effectiveness for Urdu Language</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>39313</spage><epage>39329</epage><pages>39313-39329</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Stemming is an essential step in various Natural Language Processing (NLP) applications and is used to reduce different variants of the query words to a standard form to avoid the vocabulary mismatch issue in Information Retrieval (IR) systems. Due to specific grammatical rules and complex morphological structures, finding an effective stemming algorithm in Urdu is a challenging task. Although, several stemming algorithms have been proposed for the Urdu text stemming; however, none of them extract the stem from multilevel inflected forms. In this context, according to the best of our knowledge, this is a first effort towards the proposition and evaluation of a novel Urdu Text Stemmer (UTS) that can deal with multi-level inflection forms in Urdu text. The experimental evaluation of the proposed scheme has been conducted on the text-based and word-based custom-developed corpus. The proposed stemming technique is rigorously evaluated and compared with state-of-the-art stemming algorithms. Experimental results demonstrate that UTS outperforms existing Urdu stemmers and achieves an accuracy of 94.92% and 91.8% on word corpus and text corpus, respectively. We also evaluated our proposed system in an Information Retrieval application for Urdu, using the Collection for Urdu Retrieval Evaluation (CURE) dataset. Our approach for information retrieval outperformed and improved both recall and precision metrics.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3373714</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0093-6186</orcidid><orcidid>https://orcid.org/0000-0001-8657-1282</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.39313-39329
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10460562
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Data models
Information analysis
Information retrieval
lemmatizer
Measurement techniques
Natural language processing
Stemmer
Text mining
Urdu stemmer
Vocabulary
Words (language)
title Building a Multilevel Inflection Handling Stemmer to Improve Search Effectiveness for Urdu Language
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A05%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Building%20a%20Multilevel%20Inflection%20Handling%20Stemmer%20to%20Improve%20Search%20Effectiveness%20for%20Urdu%20Language&rft.jtitle=IEEE%20access&rft.au=Jabbar,%20Abdul&rft.date=2024&rft.volume=12&rft.spage=39313&rft.epage=39329&rft.pages=39313-39329&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3373714&rft_dat=%3Cproquest_ieee_%3E2969056459%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2969056459&rft_id=info:pmid/&rft_ieee_id=10460562&rft_doaj_id=oai_doaj_org_article_207ece6951a341cbbd00acd0af9a360c&rfr_iscdi=true