Building a Multilevel Inflection Handling Stemmer to Improve Search Effectiveness for Urdu Language
Stemming is an essential step in various Natural Language Processing (NLP) applications and is used to reduce different variants of the query words to a standard form to avoid the vocabulary mismatch issue in Information Retrieval (IR) systems. Due to specific grammatical rules and complex morpholog...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.39313-39329 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39329 |
---|---|
container_issue | |
container_start_page | 39313 |
container_title | IEEE access |
container_volume | 12 |
creator | Jabbar, Abdul Iqbal, Sajid Alaulamie, Abdullah Abdulrhman Ilahi, Manzoor |
description | Stemming is an essential step in various Natural Language Processing (NLP) applications and is used to reduce different variants of the query words to a standard form to avoid the vocabulary mismatch issue in Information Retrieval (IR) systems. Due to specific grammatical rules and complex morphological structures, finding an effective stemming algorithm in Urdu is a challenging task. Although, several stemming algorithms have been proposed for the Urdu text stemming; however, none of them extract the stem from multilevel inflected forms. In this context, according to the best of our knowledge, this is a first effort towards the proposition and evaluation of a novel Urdu Text Stemmer (UTS) that can deal with multi-level inflection forms in Urdu text. The experimental evaluation of the proposed scheme has been conducted on the text-based and word-based custom-developed corpus. The proposed stemming technique is rigorously evaluated and compared with state-of-the-art stemming algorithms. Experimental results demonstrate that UTS outperforms existing Urdu stemmers and achieves an accuracy of 94.92% and 91.8% on word corpus and text corpus, respectively. We also evaluated our proposed system in an Information Retrieval application for Urdu, using the Collection for Urdu Retrieval Evaluation (CURE) dataset. Our approach for information retrieval outperformed and improved both recall and precision metrics. |
doi_str_mv | 10.1109/ACCESS.2024.3373714 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10460562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10460562</ieee_id><doaj_id>oai_doaj_org_article_207ece6951a341cbbd00acd0af9a360c</doaj_id><sourcerecordid>2969056459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8b4b2065dab184307625c10566f1f6dfbeb872009ab3a2cfb82f10ecef6d5a5f3</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIVNAvgIMlzi1-xE5yLFWhlYo4lJ6ttbMuqdK4OEkl_h6XIIQva-3OzD4mSe4YnTJGi8fZfL7YbKac8nQqRCYyll4kI85UMRFSqMt__-tk3LZ7Gl8eUzIbJfapr-qyanYEyGtfd1WNJ6zJqnE12q7yDVlCU9ZnwKbDwwED6TxZHY7Bn5BsEIL9IAvnzuATNti2xPlAtqHsyRqaXQ87vE2uHNQtjn_jTbJ9XrzPl5P128tqPltPrJBFN8lNajhVsgTD8lTQTHFpGZVKOeZU6QyaPOOUFmAEcOtMzh2jaDEWJUgnbpLVoFt62OtjqA4QvrSHSv8kfNhpCF1la9ScZpEYT8BApMwaU1IKtqTgChCK2qj1MGjFRT97bDu9931o4viaF6qIU6WyiCgxoGzwbRvQ_XVlVJ_N0YM5-myO_jUnsu4HVoWI_xipirJcfAMc8Ivk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969056459</pqid></control><display><type>article</type><title>Building a Multilevel Inflection Handling Stemmer to Improve Search Effectiveness for Urdu Language</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jabbar, Abdul ; Iqbal, Sajid ; Alaulamie, Abdullah Abdulrhman ; Ilahi, Manzoor</creator><creatorcontrib>Jabbar, Abdul ; Iqbal, Sajid ; Alaulamie, Abdullah Abdulrhman ; Ilahi, Manzoor</creatorcontrib><description>Stemming is an essential step in various Natural Language Processing (NLP) applications and is used to reduce different variants of the query words to a standard form to avoid the vocabulary mismatch issue in Information Retrieval (IR) systems. Due to specific grammatical rules and complex morphological structures, finding an effective stemming algorithm in Urdu is a challenging task. Although, several stemming algorithms have been proposed for the Urdu text stemming; however, none of them extract the stem from multilevel inflected forms. In this context, according to the best of our knowledge, this is a first effort towards the proposition and evaluation of a novel Urdu Text Stemmer (UTS) that can deal with multi-level inflection forms in Urdu text. The experimental evaluation of the proposed scheme has been conducted on the text-based and word-based custom-developed corpus. The proposed stemming technique is rigorously evaluated and compared with state-of-the-art stemming algorithms. Experimental results demonstrate that UTS outperforms existing Urdu stemmers and achieves an accuracy of 94.92% and 91.8% on word corpus and text corpus, respectively. We also evaluated our proposed system in an Information Retrieval application for Urdu, using the Collection for Urdu Retrieval Evaluation (CURE) dataset. Our approach for information retrieval outperformed and improved both recall and precision metrics.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3373714</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Data models ; Information analysis ; Information retrieval ; lemmatizer ; Measurement techniques ; Natural language processing ; Stemmer ; Text mining ; Urdu stemmer ; Vocabulary ; Words (language)</subject><ispartof>IEEE access, 2024, Vol.12, p.39313-39329</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-8b4b2065dab184307625c10566f1f6dfbeb872009ab3a2cfb82f10ecef6d5a5f3</cites><orcidid>0000-0003-0093-6186 ; 0000-0001-8657-1282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10460562$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Jabbar, Abdul</creatorcontrib><creatorcontrib>Iqbal, Sajid</creatorcontrib><creatorcontrib>Alaulamie, Abdullah Abdulrhman</creatorcontrib><creatorcontrib>Ilahi, Manzoor</creatorcontrib><title>Building a Multilevel Inflection Handling Stemmer to Improve Search Effectiveness for Urdu Language</title><title>IEEE access</title><addtitle>Access</addtitle><description>Stemming is an essential step in various Natural Language Processing (NLP) applications and is used to reduce different variants of the query words to a standard form to avoid the vocabulary mismatch issue in Information Retrieval (IR) systems. Due to specific grammatical rules and complex morphological structures, finding an effective stemming algorithm in Urdu is a challenging task. Although, several stemming algorithms have been proposed for the Urdu text stemming; however, none of them extract the stem from multilevel inflected forms. In this context, according to the best of our knowledge, this is a first effort towards the proposition and evaluation of a novel Urdu Text Stemmer (UTS) that can deal with multi-level inflection forms in Urdu text. The experimental evaluation of the proposed scheme has been conducted on the text-based and word-based custom-developed corpus. The proposed stemming technique is rigorously evaluated and compared with state-of-the-art stemming algorithms. Experimental results demonstrate that UTS outperforms existing Urdu stemmers and achieves an accuracy of 94.92% and 91.8% on word corpus and text corpus, respectively. We also evaluated our proposed system in an Information Retrieval application for Urdu, using the Collection for Urdu Retrieval Evaluation (CURE) dataset. Our approach for information retrieval outperformed and improved both recall and precision metrics.</description><subject>Algorithms</subject><subject>Data models</subject><subject>Information analysis</subject><subject>Information retrieval</subject><subject>lemmatizer</subject><subject>Measurement techniques</subject><subject>Natural language processing</subject><subject>Stemmer</subject><subject>Text mining</subject><subject>Urdu stemmer</subject><subject>Vocabulary</subject><subject>Words (language)</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIVNAvgIMlzi1-xE5yLFWhlYo4lJ6ttbMuqdK4OEkl_h6XIIQva-3OzD4mSe4YnTJGi8fZfL7YbKac8nQqRCYyll4kI85UMRFSqMt__-tk3LZ7Gl8eUzIbJfapr-qyanYEyGtfd1WNJ6zJqnE12q7yDVlCU9ZnwKbDwwED6TxZHY7Bn5BsEIL9IAvnzuATNti2xPlAtqHsyRqaXQ87vE2uHNQtjn_jTbJ9XrzPl5P128tqPltPrJBFN8lNajhVsgTD8lTQTHFpGZVKOeZU6QyaPOOUFmAEcOtMzh2jaDEWJUgnbpLVoFt62OtjqA4QvrSHSv8kfNhpCF1la9ScZpEYT8BApMwaU1IKtqTgChCK2qj1MGjFRT97bDu9931o4viaF6qIU6WyiCgxoGzwbRvQ_XVlVJ_N0YM5-myO_jUnsu4HVoWI_xipirJcfAMc8Ivk</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Jabbar, Abdul</creator><creator>Iqbal, Sajid</creator><creator>Alaulamie, Abdullah Abdulrhman</creator><creator>Ilahi, Manzoor</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0093-6186</orcidid><orcidid>https://orcid.org/0000-0001-8657-1282</orcidid></search><sort><creationdate>2024</creationdate><title>Building a Multilevel Inflection Handling Stemmer to Improve Search Effectiveness for Urdu Language</title><author>Jabbar, Abdul ; Iqbal, Sajid ; Alaulamie, Abdullah Abdulrhman ; Ilahi, Manzoor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8b4b2065dab184307625c10566f1f6dfbeb872009ab3a2cfb82f10ecef6d5a5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Data models</topic><topic>Information analysis</topic><topic>Information retrieval</topic><topic>lemmatizer</topic><topic>Measurement techniques</topic><topic>Natural language processing</topic><topic>Stemmer</topic><topic>Text mining</topic><topic>Urdu stemmer</topic><topic>Vocabulary</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jabbar, Abdul</creatorcontrib><creatorcontrib>Iqbal, Sajid</creatorcontrib><creatorcontrib>Alaulamie, Abdullah Abdulrhman</creatorcontrib><creatorcontrib>Ilahi, Manzoor</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jabbar, Abdul</au><au>Iqbal, Sajid</au><au>Alaulamie, Abdullah Abdulrhman</au><au>Ilahi, Manzoor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Building a Multilevel Inflection Handling Stemmer to Improve Search Effectiveness for Urdu Language</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>39313</spage><epage>39329</epage><pages>39313-39329</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Stemming is an essential step in various Natural Language Processing (NLP) applications and is used to reduce different variants of the query words to a standard form to avoid the vocabulary mismatch issue in Information Retrieval (IR) systems. Due to specific grammatical rules and complex morphological structures, finding an effective stemming algorithm in Urdu is a challenging task. Although, several stemming algorithms have been proposed for the Urdu text stemming; however, none of them extract the stem from multilevel inflected forms. In this context, according to the best of our knowledge, this is a first effort towards the proposition and evaluation of a novel Urdu Text Stemmer (UTS) that can deal with multi-level inflection forms in Urdu text. The experimental evaluation of the proposed scheme has been conducted on the text-based and word-based custom-developed corpus. The proposed stemming technique is rigorously evaluated and compared with state-of-the-art stemming algorithms. Experimental results demonstrate that UTS outperforms existing Urdu stemmers and achieves an accuracy of 94.92% and 91.8% on word corpus and text corpus, respectively. We also evaluated our proposed system in an Information Retrieval application for Urdu, using the Collection for Urdu Retrieval Evaluation (CURE) dataset. Our approach for information retrieval outperformed and improved both recall and precision metrics.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3373714</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0093-6186</orcidid><orcidid>https://orcid.org/0000-0001-8657-1282</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.39313-39329 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10460562 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Data models Information analysis Information retrieval lemmatizer Measurement techniques Natural language processing Stemmer Text mining Urdu stemmer Vocabulary Words (language) |
title | Building a Multilevel Inflection Handling Stemmer to Improve Search Effectiveness for Urdu Language |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A05%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Building%20a%20Multilevel%20Inflection%20Handling%20Stemmer%20to%20Improve%20Search%20Effectiveness%20for%20Urdu%20Language&rft.jtitle=IEEE%20access&rft.au=Jabbar,%20Abdul&rft.date=2024&rft.volume=12&rft.spage=39313&rft.epage=39329&rft.pages=39313-39329&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3373714&rft_dat=%3Cproquest_ieee_%3E2969056459%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2969056459&rft_id=info:pmid/&rft_ieee_id=10460562&rft_doaj_id=oai_doaj_org_article_207ece6951a341cbbd00acd0af9a360c&rfr_iscdi=true |