Improving Air Quality Zoning through Deep Learning and Hyperlocal Measurements
According to the Air Quality Directive 2008/50/EC, air quality zoning divides a territory into air quality zones where pollution and citizen exposure are similar and can be monitored using similar strategies. However, there is no standardized computational methodology to solve this problem, and only...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024-01, Vol.12, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 12 |
creator | Fernandez, Eduardo Illueca Valera, Antonio Jesus Jara Breis, Jesualdo Tomas Fernandez |
description | According to the Air Quality Directive 2008/50/EC, air quality zoning divides a territory into air quality zones where pollution and citizen exposure are similar and can be monitored using similar strategies. However, there is no standardized computational methodology to solve this problem, and only a few experiences in the Comunidad of Madrid based on CHIMERE-WRF. In this study, we propose a methodological improvement based on the application of deep learning. Our method uses the CHIMERE-WRF air quality modelling system and adds a step that uses neural networks architectures to calibrate the simulations. We have validated our method in the Region of Murcia. The results obtained are promising given the values of the Pearson coefficient, obtaining r = 0.94 for NO 2 and r = 0.95 for O 3 , improving 86 % and 29 % the performances reported in the state of the art. In addition, the cluster score improves after applying neural networks, demonstrating that neural networks improve the consistency of clusters compared to the current air quality zoning. This opened new research opportunities based on the use of neural networks for dimension reduction in spatial clustering problems, and we were able to provide recommendations for a new measurement point in the Region of Murcia Air Quality Network. |
doi_str_mv | 10.1109/ACCESS.2024.3374208 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10460554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10460554</ieee_id><doaj_id>oai_doaj_org_article_74c8fad3253e436d8c1b0e954c55844c</doaj_id><sourcerecordid>2969055365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-9986fddae81bd0a1bc99aebe7e7db69c205bc471c242962f2dbdd44d7e0b20c83</originalsourceid><addsrcrecordid>eNpNUU1Lw0AQDaJgqf0Fegh4Tt3PJHsssdpCVaR68bJsdidtSpqNm0Tov3fbiHQuMzzmvTfMC4JbjKYYI_Ewy7L5ej0liLAppQkjKL0IRgTHIqKcxpdn83Uwadsd8pV6iCej4HW5b5z9KetNOCtd-N6rquwO4Zetj1C3dbbfbMNHgCZcgXInVNUmXBwacJXVqgpfQLW9gz3UXXsTXBWqamHy18fB59P8I1tEq7fnZTZbRZoh0UVCpHFhjIIU5wYpnGshFOSQQGLyWGiCeK5ZgjVhRMSkICY3hjGTAMoJ0ikdB8tB11i1k40r98odpFWlPAHWbaRyXakrkAnTaaEMJZwCo7FJNc4RCM405ylj2mvdD1r-Ed89tJ3c2d7V_nzpzQXi_nHcb9FhSzvbtg6Kf1eM5DEHOeQgjznIvxw8625glQBwxmCxl2X0F9AnhGM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969055365</pqid></control><display><type>article</type><title>Improving Air Quality Zoning through Deep Learning and Hyperlocal Measurements</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fernandez, Eduardo Illueca ; Valera, Antonio Jesus Jara ; Breis, Jesualdo Tomas Fernandez</creator><creatorcontrib>Fernandez, Eduardo Illueca ; Valera, Antonio Jesus Jara ; Breis, Jesualdo Tomas Fernandez</creatorcontrib><description>According to the Air Quality Directive 2008/50/EC, air quality zoning divides a territory into air quality zones where pollution and citizen exposure are similar and can be monitored using similar strategies. However, there is no standardized computational methodology to solve this problem, and only a few experiences in the Comunidad of Madrid based on CHIMERE-WRF. In this study, we propose a methodological improvement based on the application of deep learning. Our method uses the CHIMERE-WRF air quality modelling system and adds a step that uses neural networks architectures to calibrate the simulations. We have validated our method in the Region of Murcia. The results obtained are promising given the values of the Pearson coefficient, obtaining r = 0.94 for NO 2 and r = 0.95 for O 3 , improving 86 % and 29 % the performances reported in the state of the art. In addition, the cluster score improves after applying neural networks, demonstrating that neural networks improve the consistency of clusters compared to the current air quality zoning. This opened new research opportunities based on the use of neural networks for dimension reduction in spatial clustering problems, and we were able to provide recommendations for a new measurement point in the Region of Murcia Air Quality Network.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3374208</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Air quality ; artificial neural networks ; atmospheric modeling ; atmospheric modelling ; Clustering ; clustering algorithms ; Deep learning ; Neural networks ; Zoning</subject><ispartof>IEEE access, 2024-01, Vol.12, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-9986fddae81bd0a1bc99aebe7e7db69c205bc471c242962f2dbdd44d7e0b20c83</citedby><cites>FETCH-LOGICAL-c409t-9986fddae81bd0a1bc99aebe7e7db69c205bc471c242962f2dbdd44d7e0b20c83</cites><orcidid>0000-0002-7558-2880 ; 0000-0002-1837-0355 ; 0000-0002-2651-6684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10460554$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,27632,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Fernandez, Eduardo Illueca</creatorcontrib><creatorcontrib>Valera, Antonio Jesus Jara</creatorcontrib><creatorcontrib>Breis, Jesualdo Tomas Fernandez</creatorcontrib><title>Improving Air Quality Zoning through Deep Learning and Hyperlocal Measurements</title><title>IEEE access</title><addtitle>Access</addtitle><description>According to the Air Quality Directive 2008/50/EC, air quality zoning divides a territory into air quality zones where pollution and citizen exposure are similar and can be monitored using similar strategies. However, there is no standardized computational methodology to solve this problem, and only a few experiences in the Comunidad of Madrid based on CHIMERE-WRF. In this study, we propose a methodological improvement based on the application of deep learning. Our method uses the CHIMERE-WRF air quality modelling system and adds a step that uses neural networks architectures to calibrate the simulations. We have validated our method in the Region of Murcia. The results obtained are promising given the values of the Pearson coefficient, obtaining r = 0.94 for NO 2 and r = 0.95 for O 3 , improving 86 % and 29 % the performances reported in the state of the art. In addition, the cluster score improves after applying neural networks, demonstrating that neural networks improve the consistency of clusters compared to the current air quality zoning. This opened new research opportunities based on the use of neural networks for dimension reduction in spatial clustering problems, and we were able to provide recommendations for a new measurement point in the Region of Murcia Air Quality Network.</description><subject>Air quality</subject><subject>artificial neural networks</subject><subject>atmospheric modeling</subject><subject>atmospheric modelling</subject><subject>Clustering</subject><subject>clustering algorithms</subject><subject>Deep learning</subject><subject>Neural networks</subject><subject>Zoning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1Lw0AQDaJgqf0Fegh4Tt3PJHsssdpCVaR68bJsdidtSpqNm0Tov3fbiHQuMzzmvTfMC4JbjKYYI_Ewy7L5ej0liLAppQkjKL0IRgTHIqKcxpdn83Uwadsd8pV6iCej4HW5b5z9KetNOCtd-N6rquwO4Zetj1C3dbbfbMNHgCZcgXInVNUmXBwacJXVqgpfQLW9gz3UXXsTXBWqamHy18fB59P8I1tEq7fnZTZbRZoh0UVCpHFhjIIU5wYpnGshFOSQQGLyWGiCeK5ZgjVhRMSkICY3hjGTAMoJ0ikdB8tB11i1k40r98odpFWlPAHWbaRyXakrkAnTaaEMJZwCo7FJNc4RCM405ylj2mvdD1r-Ed89tJ3c2d7V_nzpzQXi_nHcb9FhSzvbtg6Kf1eM5DEHOeQgjznIvxw8625glQBwxmCxl2X0F9AnhGM</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Fernandez, Eduardo Illueca</creator><creator>Valera, Antonio Jesus Jara</creator><creator>Breis, Jesualdo Tomas Fernandez</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7558-2880</orcidid><orcidid>https://orcid.org/0000-0002-1837-0355</orcidid><orcidid>https://orcid.org/0000-0002-2651-6684</orcidid></search><sort><creationdate>20240101</creationdate><title>Improving Air Quality Zoning through Deep Learning and Hyperlocal Measurements</title><author>Fernandez, Eduardo Illueca ; Valera, Antonio Jesus Jara ; Breis, Jesualdo Tomas Fernandez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-9986fddae81bd0a1bc99aebe7e7db69c205bc471c242962f2dbdd44d7e0b20c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air quality</topic><topic>artificial neural networks</topic><topic>atmospheric modeling</topic><topic>atmospheric modelling</topic><topic>Clustering</topic><topic>clustering algorithms</topic><topic>Deep learning</topic><topic>Neural networks</topic><topic>Zoning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandez, Eduardo Illueca</creatorcontrib><creatorcontrib>Valera, Antonio Jesus Jara</creatorcontrib><creatorcontrib>Breis, Jesualdo Tomas Fernandez</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandez, Eduardo Illueca</au><au>Valera, Antonio Jesus Jara</au><au>Breis, Jesualdo Tomas Fernandez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Air Quality Zoning through Deep Learning and Hyperlocal Measurements</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>According to the Air Quality Directive 2008/50/EC, air quality zoning divides a territory into air quality zones where pollution and citizen exposure are similar and can be monitored using similar strategies. However, there is no standardized computational methodology to solve this problem, and only a few experiences in the Comunidad of Madrid based on CHIMERE-WRF. In this study, we propose a methodological improvement based on the application of deep learning. Our method uses the CHIMERE-WRF air quality modelling system and adds a step that uses neural networks architectures to calibrate the simulations. We have validated our method in the Region of Murcia. The results obtained are promising given the values of the Pearson coefficient, obtaining r = 0.94 for NO 2 and r = 0.95 for O 3 , improving 86 % and 29 % the performances reported in the state of the art. In addition, the cluster score improves after applying neural networks, demonstrating that neural networks improve the consistency of clusters compared to the current air quality zoning. This opened new research opportunities based on the use of neural networks for dimension reduction in spatial clustering problems, and we were able to provide recommendations for a new measurement point in the Region of Murcia Air Quality Network.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3374208</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7558-2880</orcidid><orcidid>https://orcid.org/0000-0002-1837-0355</orcidid><orcidid>https://orcid.org/0000-0002-2651-6684</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024-01, Vol.12, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10460554 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Air quality artificial neural networks atmospheric modeling atmospheric modelling Clustering clustering algorithms Deep learning Neural networks Zoning |
title | Improving Air Quality Zoning through Deep Learning and Hyperlocal Measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Air%20Quality%20Zoning%20through%20Deep%20Learning%20and%20Hyperlocal%20Measurements&rft.jtitle=IEEE%20access&rft.au=Fernandez,%20Eduardo%20Illueca&rft.date=2024-01-01&rft.volume=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3374208&rft_dat=%3Cproquest_ieee_%3E2969055365%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2969055365&rft_id=info:pmid/&rft_ieee_id=10460554&rft_doaj_id=oai_doaj_org_article_74c8fad3253e436d8c1b0e954c55844c&rfr_iscdi=true |