Study of Superconducting System Under Hydrogen Demand for Carbon Neutral Port
With the global shift toward sustainable energy, emphasis is being placed on the efficient use of available resources. This study focuses on the potential application of High-Temperature superconductor (HTS) installed to synchronous rotating machines for hydropower generation, particularly in ports,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2024-05, Vol.34 (3), p.1-4 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 34 |
creator | Tsuzuki, K. Yamada, S. Matsumoto, Y. Oikawa, D. Tsukamoto, T. Andoh, H. |
description | With the global shift toward sustainable energy, emphasis is being placed on the efficient use of available resources. This study focuses on the potential application of High-Temperature superconductor (HTS) installed to synchronous rotating machines for hydropower generation, particularly in ports, introducing the concept of Carbon Neutral Port (CNP) and exploring the role of rotating machines in meeting both electricity and hydrogen demand to reduce CO 2 emissions. Scenarios that obtain commercial electricity instead of using renewable energy have inherent costs associated with CO 2 emissions. In terms of energy conversion efficiency, High-Temperature Superconducting (HTS) generators exhibit a significant advantage over traditional non-superconducting generators, a superiority primarily attributable to their enhanced capacity for generating intensified magnetic flux densities and their ability to handle larger current loads. In this study, the operational estimation of the power generation system was examined based on the hypothesis that the use of HTS generators in an integrated hydrogen system can produce more hydrogen from surplus electricity and reduce CO 2 emissions. The model for meeting hydrogen demand shows a net positive reduction in CO 2 emissions, suggesting that integrating hydrogen production within such a system can be effective. By using the hydrogen efficiently generated from this surplus electricity to meet the demand for cargo handling machinery, a 6.8% reduction in CO 2 emissions from port demand was obtained. Thus, the data suggest that an efficiency difference of only 6% with HTS generators can lead to significant benefits, especially when combined with hydrogen production. This paper reports on methods and new concepts to achieve these results through a study on the integration of superconducting synchronous machines and hydrogen systems in ports for sustainable energy conversion. |
doi_str_mv | 10.1109/TASC.2024.3360940 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10460197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10460197</ieee_id><sourcerecordid>2973245218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-fdd9de65d73b4ae89b3d16c685cde082b99fc3eafaf269495612525d11baaa263</originalsourceid><addsrcrecordid>eNpNkMlqwzAURUVpoenwAYUuBF071dMUaxnSIYV0ACdrIVtPISGxUtle-O_rkCy6endx7n1wCHkANgZg5nk5LWZjzrgcC6GZkeyCjECpPOMK1OWQmYIs51xck5um2TIGMpdqRD6LtvM9jYEW3QFTFWvfVe2mXtOib1rc01XtMdF571NcY01fcO9qT0NMdOZSGWv6hV2b3I7-xNTekavgdg3en-8tWb29LmfzbPH9_jGbLrKKS91mwXvjUSs_EaV0mJtSeNCVzlXlkeW8NCZUAl1wgWsjjdLAFVceoHTOcS1uydNp95Dib4dNa7exS_Xw0nIzEVwqDvlAwYmqUmyahMEe0mbvUm-B2aM1e7Rmj9bs2drQeTx1Noj4j5eawbD8B2SWaPs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973245218</pqid></control><display><type>article</type><title>Study of Superconducting System Under Hydrogen Demand for Carbon Neutral Port</title><source>IEEE Electronic Library (IEL)</source><creator>Tsuzuki, K. ; Yamada, S. ; Matsumoto, Y. ; Oikawa, D. ; Tsukamoto, T. ; Andoh, H.</creator><creatorcontrib>Tsuzuki, K. ; Yamada, S. ; Matsumoto, Y. ; Oikawa, D. ; Tsukamoto, T. ; Andoh, H.</creatorcontrib><description>With the global shift toward sustainable energy, emphasis is being placed on the efficient use of available resources. This study focuses on the potential application of High-Temperature superconductor (HTS) installed to synchronous rotating machines for hydropower generation, particularly in ports, introducing the concept of Carbon Neutral Port (CNP) and exploring the role of rotating machines in meeting both electricity and hydrogen demand to reduce CO 2 emissions. Scenarios that obtain commercial electricity instead of using renewable energy have inherent costs associated with CO 2 emissions. In terms of energy conversion efficiency, High-Temperature Superconducting (HTS) generators exhibit a significant advantage over traditional non-superconducting generators, a superiority primarily attributable to their enhanced capacity for generating intensified magnetic flux densities and their ability to handle larger current loads. In this study, the operational estimation of the power generation system was examined based on the hypothesis that the use of HTS generators in an integrated hydrogen system can produce more hydrogen from surplus electricity and reduce CO 2 emissions. The model for meeting hydrogen demand shows a net positive reduction in CO 2 emissions, suggesting that integrating hydrogen production within such a system can be effective. By using the hydrogen efficiently generated from this surplus electricity to meet the demand for cargo handling machinery, a 6.8% reduction in CO 2 emissions from port demand was obtained. Thus, the data suggest that an efficiency difference of only 6% with HTS generators can lead to significant benefits, especially when combined with hydrogen production. This paper reports on methods and new concepts to achieve these results through a study on the integration of superconducting synchronous machines and hydrogen systems in ports for sustainable energy conversion.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2024.3360940</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Carbon dioxide ; Carbon offsets ; Cargo handling ; CO<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">2 Emission ; Cooling ; Demand ; Electricity ; Emissions ; Energy conversion efficiency ; Energy costs ; Generators ; high power density ; High temperature superconductors ; HTS generator ; Hydroelectric power generation ; Hydrogen ; Hydrogen Integrated System ; Hydrogen production ; Magnetic flux ; Power generation ; Production ; Reduction ; Renewable energy ; Rotating machinery ; Rotating machines ; superconducting machines ; Superconductivity ; Synchronous machines</subject><ispartof>IEEE transactions on applied superconductivity, 2024-05, Vol.34 (3), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-fdd9de65d73b4ae89b3d16c685cde082b99fc3eafaf269495612525d11baaa263</cites><orcidid>0000-0002-1762-2661 ; 0000-0002-2610-9392 ; 0009-0007-6358-3783 ; 0009-0003-0555-7545 ; 0009-0008-2730-7850</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10460197$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10460197$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tsuzuki, K.</creatorcontrib><creatorcontrib>Yamada, S.</creatorcontrib><creatorcontrib>Matsumoto, Y.</creatorcontrib><creatorcontrib>Oikawa, D.</creatorcontrib><creatorcontrib>Tsukamoto, T.</creatorcontrib><creatorcontrib>Andoh, H.</creatorcontrib><title>Study of Superconducting System Under Hydrogen Demand for Carbon Neutral Port</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>With the global shift toward sustainable energy, emphasis is being placed on the efficient use of available resources. This study focuses on the potential application of High-Temperature superconductor (HTS) installed to synchronous rotating machines for hydropower generation, particularly in ports, introducing the concept of Carbon Neutral Port (CNP) and exploring the role of rotating machines in meeting both electricity and hydrogen demand to reduce CO 2 emissions. Scenarios that obtain commercial electricity instead of using renewable energy have inherent costs associated with CO 2 emissions. In terms of energy conversion efficiency, High-Temperature Superconducting (HTS) generators exhibit a significant advantage over traditional non-superconducting generators, a superiority primarily attributable to their enhanced capacity for generating intensified magnetic flux densities and their ability to handle larger current loads. In this study, the operational estimation of the power generation system was examined based on the hypothesis that the use of HTS generators in an integrated hydrogen system can produce more hydrogen from surplus electricity and reduce CO 2 emissions. The model for meeting hydrogen demand shows a net positive reduction in CO 2 emissions, suggesting that integrating hydrogen production within such a system can be effective. By using the hydrogen efficiently generated from this surplus electricity to meet the demand for cargo handling machinery, a 6.8% reduction in CO 2 emissions from port demand was obtained. Thus, the data suggest that an efficiency difference of only 6% with HTS generators can lead to significant benefits, especially when combined with hydrogen production. This paper reports on methods and new concepts to achieve these results through a study on the integration of superconducting synchronous machines and hydrogen systems in ports for sustainable energy conversion.</description><subject>Carbon dioxide</subject><subject>Carbon offsets</subject><subject>Cargo handling</subject><subject>CO<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">2 Emission</subject><subject>Cooling</subject><subject>Demand</subject><subject>Electricity</subject><subject>Emissions</subject><subject>Energy conversion efficiency</subject><subject>Energy costs</subject><subject>Generators</subject><subject>high power density</subject><subject>High temperature superconductors</subject><subject>HTS generator</subject><subject>Hydroelectric power generation</subject><subject>Hydrogen</subject><subject>Hydrogen Integrated System</subject><subject>Hydrogen production</subject><subject>Magnetic flux</subject><subject>Power generation</subject><subject>Production</subject><subject>Reduction</subject><subject>Renewable energy</subject><subject>Rotating machinery</subject><subject>Rotating machines</subject><subject>superconducting machines</subject><subject>Superconductivity</subject><subject>Synchronous machines</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMlqwzAURUVpoenwAYUuBF071dMUaxnSIYV0ACdrIVtPISGxUtle-O_rkCy6endx7n1wCHkANgZg5nk5LWZjzrgcC6GZkeyCjECpPOMK1OWQmYIs51xck5um2TIGMpdqRD6LtvM9jYEW3QFTFWvfVe2mXtOib1rc01XtMdF571NcY01fcO9qT0NMdOZSGWv6hV2b3I7-xNTekavgdg3en-8tWb29LmfzbPH9_jGbLrKKS91mwXvjUSs_EaV0mJtSeNCVzlXlkeW8NCZUAl1wgWsjjdLAFVceoHTOcS1uydNp95Dib4dNa7exS_Xw0nIzEVwqDvlAwYmqUmyahMEe0mbvUm-B2aM1e7Rmj9bs2drQeTx1Noj4j5eawbD8B2SWaPs</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Tsuzuki, K.</creator><creator>Yamada, S.</creator><creator>Matsumoto, Y.</creator><creator>Oikawa, D.</creator><creator>Tsukamoto, T.</creator><creator>Andoh, H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1762-2661</orcidid><orcidid>https://orcid.org/0000-0002-2610-9392</orcidid><orcidid>https://orcid.org/0009-0007-6358-3783</orcidid><orcidid>https://orcid.org/0009-0003-0555-7545</orcidid><orcidid>https://orcid.org/0009-0008-2730-7850</orcidid></search><sort><creationdate>20240501</creationdate><title>Study of Superconducting System Under Hydrogen Demand for Carbon Neutral Port</title><author>Tsuzuki, K. ; Yamada, S. ; Matsumoto, Y. ; Oikawa, D. ; Tsukamoto, T. ; Andoh, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-fdd9de65d73b4ae89b3d16c685cde082b99fc3eafaf269495612525d11baaa263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon dioxide</topic><topic>Carbon offsets</topic><topic>Cargo handling</topic><topic>CO<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">2 Emission</topic><topic>Cooling</topic><topic>Demand</topic><topic>Electricity</topic><topic>Emissions</topic><topic>Energy conversion efficiency</topic><topic>Energy costs</topic><topic>Generators</topic><topic>high power density</topic><topic>High temperature superconductors</topic><topic>HTS generator</topic><topic>Hydroelectric power generation</topic><topic>Hydrogen</topic><topic>Hydrogen Integrated System</topic><topic>Hydrogen production</topic><topic>Magnetic flux</topic><topic>Power generation</topic><topic>Production</topic><topic>Reduction</topic><topic>Renewable energy</topic><topic>Rotating machinery</topic><topic>Rotating machines</topic><topic>superconducting machines</topic><topic>Superconductivity</topic><topic>Synchronous machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsuzuki, K.</creatorcontrib><creatorcontrib>Yamada, S.</creatorcontrib><creatorcontrib>Matsumoto, Y.</creatorcontrib><creatorcontrib>Oikawa, D.</creatorcontrib><creatorcontrib>Tsukamoto, T.</creatorcontrib><creatorcontrib>Andoh, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tsuzuki, K.</au><au>Yamada, S.</au><au>Matsumoto, Y.</au><au>Oikawa, D.</au><au>Tsukamoto, T.</au><au>Andoh, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of Superconducting System Under Hydrogen Demand for Carbon Neutral Port</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>34</volume><issue>3</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>With the global shift toward sustainable energy, emphasis is being placed on the efficient use of available resources. This study focuses on the potential application of High-Temperature superconductor (HTS) installed to synchronous rotating machines for hydropower generation, particularly in ports, introducing the concept of Carbon Neutral Port (CNP) and exploring the role of rotating machines in meeting both electricity and hydrogen demand to reduce CO 2 emissions. Scenarios that obtain commercial electricity instead of using renewable energy have inherent costs associated with CO 2 emissions. In terms of energy conversion efficiency, High-Temperature Superconducting (HTS) generators exhibit a significant advantage over traditional non-superconducting generators, a superiority primarily attributable to their enhanced capacity for generating intensified magnetic flux densities and their ability to handle larger current loads. In this study, the operational estimation of the power generation system was examined based on the hypothesis that the use of HTS generators in an integrated hydrogen system can produce more hydrogen from surplus electricity and reduce CO 2 emissions. The model for meeting hydrogen demand shows a net positive reduction in CO 2 emissions, suggesting that integrating hydrogen production within such a system can be effective. By using the hydrogen efficiently generated from this surplus electricity to meet the demand for cargo handling machinery, a 6.8% reduction in CO 2 emissions from port demand was obtained. Thus, the data suggest that an efficiency difference of only 6% with HTS generators can lead to significant benefits, especially when combined with hydrogen production. This paper reports on methods and new concepts to achieve these results through a study on the integration of superconducting synchronous machines and hydrogen systems in ports for sustainable energy conversion.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2024.3360940</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-1762-2661</orcidid><orcidid>https://orcid.org/0000-0002-2610-9392</orcidid><orcidid>https://orcid.org/0009-0007-6358-3783</orcidid><orcidid>https://orcid.org/0009-0003-0555-7545</orcidid><orcidid>https://orcid.org/0009-0008-2730-7850</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2024-05, Vol.34 (3), p.1-4 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_ieee_primary_10460197 |
source | IEEE Electronic Library (IEL) |
subjects | Carbon dioxide Carbon offsets Cargo handling CO<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">2 Emission Cooling Demand Electricity Emissions Energy conversion efficiency Energy costs Generators high power density High temperature superconductors HTS generator Hydroelectric power generation Hydrogen Hydrogen Integrated System Hydrogen production Magnetic flux Power generation Production Reduction Renewable energy Rotating machinery Rotating machines superconducting machines Superconductivity Synchronous machines |
title | Study of Superconducting System Under Hydrogen Demand for Carbon Neutral Port |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A42%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20Superconducting%20System%20Under%20Hydrogen%20Demand%20for%20Carbon%20Neutral%20Port&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Tsuzuki,%20K.&rft.date=2024-05-01&rft.volume=34&rft.issue=3&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2024.3360940&rft_dat=%3Cproquest_RIE%3E2973245218%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973245218&rft_id=info:pmid/&rft_ieee_id=10460197&rfr_iscdi=true |