SLIDE-Net: A Sequential Modeling Approach With Adaptive Fuzzy C-Mean Empowered Data Balancing Policy for IDC Detection

Breast cancer is a significant global health concern, with invasive ductal carcinoma (IDC) being a significant subtype. Detecting IDC is a challenging task that can be hindered by the oversight of important contextual cues within whole slide images (WSIs). To address this issue, we present the Seque...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2024-10, Vol.32 (10), p.5557-5570
Hauptverfasser: Kumar, Abhinav, Tiwari, Harshit, Singh, Rishav, Singh, Amit Kumar, Singh, Sanjay Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5570
container_issue 10
container_start_page 5557
container_title IEEE transactions on fuzzy systems
container_volume 32
creator Kumar, Abhinav
Tiwari, Harshit
Singh, Rishav
Singh, Amit Kumar
Singh, Sanjay Kumar
description Breast cancer is a significant global health concern, with invasive ductal carcinoma (IDC) being a significant subtype. Detecting IDC is a challenging task that can be hindered by the oversight of important contextual cues within whole slide images (WSIs). To address this issue, we present the Sequential-LSTM Invasive Ductal Carcinoma Detection with EfficientNet (SLIDE-Net) framework. SLIDE-Net synchronizes tissue image patch locations within WSIs, allowing for comprehensive and subtle identification of IDC. The inherent issue of data imbalance in IDC datasets, particularly the variable density of positive IDC patches concerning WSI size, is effectively tackled through the introduction of adaptive fuzzy C-Mean as a data balancing policy. This novel approach enhances model efficacy and robustness, resulting in superior performance across key metrics, such as accuracy (86%), balanced accuracy (BAC) (86%), sensitivity (87%), specificity (86%), and GMean (86%). Our findings were substantiated by a comprehensive analysis revealing the significant cross-patch dependencies observed among patches of similar classes. When tested on the balanced PatchCAM dataset, SLIDE-Net once again showcased superiority with accuracy (89%), BAC (89%), F1-Score (87%), sensitivity (87%), and specificity (90%). This underscores the efficient utilization of shared contextual information within WSIs. These results firmly establish SLIDE-Net as a robust and reliable solution for accurate IDC detection. Our work not only advances the precision of IDC detection, but also contributes valuable insights into the intricate dynamics of histopathology image analysis, paving the way for enhanced diagnostic accuracy in the ongoing battle against breast cancer.
doi_str_mv 10.1109/TFUZZ.2024.3373534
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10460142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10460142</ieee_id><sourcerecordid>10_1109_TFUZZ_2024_3373534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-f03b1233e5533e0ddfc882485d94b63641201c539f319671a8becd34b2c1c3173</originalsourceid><addsrcrecordid>eNpN0M1OwkAQwPGN0UREX8B42Bco7uxuv7zVAkoCagLEhEuz3U5lTWlru2Dg6S3iwcvMXP5z-BFyC2wAwML7xXi5Wg0443IghC9cIc9ID0IJDmNCnnc384Tj-cy7JFdt-8kYSBeCHtnNp5PhyHlB-0AjOsevLZbWqILOqgwLU37QqK6bSuk1fTd2TaNM1dbskI63h8Oexs4MVUlHm7r6xgYzOlRW0UdVqFIf47eqMHpP86qhk2FMh2hRW1OV1-QiV0WLN3-7T5bj0SJ-dqavT5M4mjqaQ2idnIkUuBDout1gWZbrIOAycLNQpp7wJHAG2hVhLiD0fFBBijoTMuUatABf9Ak__dVN1bYN5kndmI1q9gmw5CiX_MolR7nkT66L7k6RQcR_gfQ6NS5-AC7oaW4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SLIDE-Net: A Sequential Modeling Approach With Adaptive Fuzzy C-Mean Empowered Data Balancing Policy for IDC Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Kumar, Abhinav ; Tiwari, Harshit ; Singh, Rishav ; Singh, Amit Kumar ; Singh, Sanjay Kumar</creator><creatorcontrib>Kumar, Abhinav ; Tiwari, Harshit ; Singh, Rishav ; Singh, Amit Kumar ; Singh, Sanjay Kumar</creatorcontrib><description>Breast cancer is a significant global health concern, with invasive ductal carcinoma (IDC) being a significant subtype. Detecting IDC is a challenging task that can be hindered by the oversight of important contextual cues within whole slide images (WSIs). To address this issue, we present the Sequential-LSTM Invasive Ductal Carcinoma Detection with EfficientNet (SLIDE-Net) framework. SLIDE-Net synchronizes tissue image patch locations within WSIs, allowing for comprehensive and subtle identification of IDC. The inherent issue of data imbalance in IDC datasets, particularly the variable density of positive IDC patches concerning WSI size, is effectively tackled through the introduction of adaptive fuzzy C-Mean as a data balancing policy. This novel approach enhances model efficacy and robustness, resulting in superior performance across key metrics, such as accuracy (86%), balanced accuracy (BAC) (86%), sensitivity (87%), specificity (86%), and GMean (86%). Our findings were substantiated by a comprehensive analysis revealing the significant cross-patch dependencies observed among patches of similar classes. When tested on the balanced PatchCAM dataset, SLIDE-Net once again showcased superiority with accuracy (89%), BAC (89%), F1-Score (87%), sensitivity (87%), and specificity (90%). This underscores the efficient utilization of shared contextual information within WSIs. These results firmly establish SLIDE-Net as a robust and reliable solution for accurate IDC detection. Our work not only advances the precision of IDC detection, but also contributes valuable insights into the intricate dynamics of histopathology image analysis, paving the way for enhanced diagnostic accuracy in the ongoing battle against breast cancer.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2024.3373534</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Adaptive fuzzy c-Mean ; Breast cancer ; Classification algorithms ; data balancing policy ; Deep learning ; Long short term memory ; Sensitivity ; sequential-modeling ; Solid modeling ; whole slide image (WSI)</subject><ispartof>IEEE transactions on fuzzy systems, 2024-10, Vol.32 (10), p.5557-5570</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-f03b1233e5533e0ddfc882485d94b63641201c539f319671a8becd34b2c1c3173</cites><orcidid>0000-0003-2947-9046 ; 0000-0001-7359-2068 ; 0000-0001-9741-4020 ; 0009-0000-3860-2558 ; 0000-0002-9061-6313</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10460142$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10460142$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kumar, Abhinav</creatorcontrib><creatorcontrib>Tiwari, Harshit</creatorcontrib><creatorcontrib>Singh, Rishav</creatorcontrib><creatorcontrib>Singh, Amit Kumar</creatorcontrib><creatorcontrib>Singh, Sanjay Kumar</creatorcontrib><title>SLIDE-Net: A Sequential Modeling Approach With Adaptive Fuzzy C-Mean Empowered Data Balancing Policy for IDC Detection</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>Breast cancer is a significant global health concern, with invasive ductal carcinoma (IDC) being a significant subtype. Detecting IDC is a challenging task that can be hindered by the oversight of important contextual cues within whole slide images (WSIs). To address this issue, we present the Sequential-LSTM Invasive Ductal Carcinoma Detection with EfficientNet (SLIDE-Net) framework. SLIDE-Net synchronizes tissue image patch locations within WSIs, allowing for comprehensive and subtle identification of IDC. The inherent issue of data imbalance in IDC datasets, particularly the variable density of positive IDC patches concerning WSI size, is effectively tackled through the introduction of adaptive fuzzy C-Mean as a data balancing policy. This novel approach enhances model efficacy and robustness, resulting in superior performance across key metrics, such as accuracy (86%), balanced accuracy (BAC) (86%), sensitivity (87%), specificity (86%), and GMean (86%). Our findings were substantiated by a comprehensive analysis revealing the significant cross-patch dependencies observed among patches of similar classes. When tested on the balanced PatchCAM dataset, SLIDE-Net once again showcased superiority with accuracy (89%), BAC (89%), F1-Score (87%), sensitivity (87%), and specificity (90%). This underscores the efficient utilization of shared contextual information within WSIs. These results firmly establish SLIDE-Net as a robust and reliable solution for accurate IDC detection. Our work not only advances the precision of IDC detection, but also contributes valuable insights into the intricate dynamics of histopathology image analysis, paving the way for enhanced diagnostic accuracy in the ongoing battle against breast cancer.</description><subject>Adaptation models</subject><subject>Adaptive fuzzy c-Mean</subject><subject>Breast cancer</subject><subject>Classification algorithms</subject><subject>data balancing policy</subject><subject>Deep learning</subject><subject>Long short term memory</subject><subject>Sensitivity</subject><subject>sequential-modeling</subject><subject>Solid modeling</subject><subject>whole slide image (WSI)</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpN0M1OwkAQwPGN0UREX8B42Bco7uxuv7zVAkoCagLEhEuz3U5lTWlru2Dg6S3iwcvMXP5z-BFyC2wAwML7xXi5Wg0443IghC9cIc9ID0IJDmNCnnc384Tj-cy7JFdt-8kYSBeCHtnNp5PhyHlB-0AjOsevLZbWqILOqgwLU37QqK6bSuk1fTd2TaNM1dbskI63h8Oexs4MVUlHm7r6xgYzOlRW0UdVqFIf47eqMHpP86qhk2FMh2hRW1OV1-QiV0WLN3-7T5bj0SJ-dqavT5M4mjqaQ2idnIkUuBDout1gWZbrIOAycLNQpp7wJHAG2hVhLiD0fFBBijoTMuUatABf9Ak__dVN1bYN5kndmI1q9gmw5CiX_MolR7nkT66L7k6RQcR_gfQ6NS5-AC7oaW4</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Kumar, Abhinav</creator><creator>Tiwari, Harshit</creator><creator>Singh, Rishav</creator><creator>Singh, Amit Kumar</creator><creator>Singh, Sanjay Kumar</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2947-9046</orcidid><orcidid>https://orcid.org/0000-0001-7359-2068</orcidid><orcidid>https://orcid.org/0000-0001-9741-4020</orcidid><orcidid>https://orcid.org/0009-0000-3860-2558</orcidid><orcidid>https://orcid.org/0000-0002-9061-6313</orcidid></search><sort><creationdate>20241001</creationdate><title>SLIDE-Net: A Sequential Modeling Approach With Adaptive Fuzzy C-Mean Empowered Data Balancing Policy for IDC Detection</title><author>Kumar, Abhinav ; Tiwari, Harshit ; Singh, Rishav ; Singh, Amit Kumar ; Singh, Sanjay Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-f03b1233e5533e0ddfc882485d94b63641201c539f319671a8becd34b2c1c3173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Adaptive fuzzy c-Mean</topic><topic>Breast cancer</topic><topic>Classification algorithms</topic><topic>data balancing policy</topic><topic>Deep learning</topic><topic>Long short term memory</topic><topic>Sensitivity</topic><topic>sequential-modeling</topic><topic>Solid modeling</topic><topic>whole slide image (WSI)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Abhinav</creatorcontrib><creatorcontrib>Tiwari, Harshit</creatorcontrib><creatorcontrib>Singh, Rishav</creatorcontrib><creatorcontrib>Singh, Amit Kumar</creatorcontrib><creatorcontrib>Singh, Sanjay Kumar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kumar, Abhinav</au><au>Tiwari, Harshit</au><au>Singh, Rishav</au><au>Singh, Amit Kumar</au><au>Singh, Sanjay Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SLIDE-Net: A Sequential Modeling Approach With Adaptive Fuzzy C-Mean Empowered Data Balancing Policy for IDC Detection</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>32</volume><issue>10</issue><spage>5557</spage><epage>5570</epage><pages>5557-5570</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>Breast cancer is a significant global health concern, with invasive ductal carcinoma (IDC) being a significant subtype. Detecting IDC is a challenging task that can be hindered by the oversight of important contextual cues within whole slide images (WSIs). To address this issue, we present the Sequential-LSTM Invasive Ductal Carcinoma Detection with EfficientNet (SLIDE-Net) framework. SLIDE-Net synchronizes tissue image patch locations within WSIs, allowing for comprehensive and subtle identification of IDC. The inherent issue of data imbalance in IDC datasets, particularly the variable density of positive IDC patches concerning WSI size, is effectively tackled through the introduction of adaptive fuzzy C-Mean as a data balancing policy. This novel approach enhances model efficacy and robustness, resulting in superior performance across key metrics, such as accuracy (86%), balanced accuracy (BAC) (86%), sensitivity (87%), specificity (86%), and GMean (86%). Our findings were substantiated by a comprehensive analysis revealing the significant cross-patch dependencies observed among patches of similar classes. When tested on the balanced PatchCAM dataset, SLIDE-Net once again showcased superiority with accuracy (89%), BAC (89%), F1-Score (87%), sensitivity (87%), and specificity (90%). This underscores the efficient utilization of shared contextual information within WSIs. These results firmly establish SLIDE-Net as a robust and reliable solution for accurate IDC detection. Our work not only advances the precision of IDC detection, but also contributes valuable insights into the intricate dynamics of histopathology image analysis, paving the way for enhanced diagnostic accuracy in the ongoing battle against breast cancer.</abstract><pub>IEEE</pub><doi>10.1109/TFUZZ.2024.3373534</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2947-9046</orcidid><orcidid>https://orcid.org/0000-0001-7359-2068</orcidid><orcidid>https://orcid.org/0000-0001-9741-4020</orcidid><orcidid>https://orcid.org/0009-0000-3860-2558</orcidid><orcidid>https://orcid.org/0000-0002-9061-6313</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2024-10, Vol.32 (10), p.5557-5570
issn 1063-6706
1941-0034
language eng
recordid cdi_ieee_primary_10460142
source IEEE Electronic Library (IEL)
subjects Adaptation models
Adaptive fuzzy c-Mean
Breast cancer
Classification algorithms
data balancing policy
Deep learning
Long short term memory
Sensitivity
sequential-modeling
Solid modeling
whole slide image (WSI)
title SLIDE-Net: A Sequential Modeling Approach With Adaptive Fuzzy C-Mean Empowered Data Balancing Policy for IDC Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SLIDE-Net:%20A%20Sequential%20Modeling%20Approach%20With%20Adaptive%20Fuzzy%20C-Mean%20Empowered%20Data%20Balancing%20Policy%20for%20IDC%20Detection&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Kumar,%20Abhinav&rft.date=2024-10-01&rft.volume=32&rft.issue=10&rft.spage=5557&rft.epage=5570&rft.pages=5557-5570&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2024.3373534&rft_dat=%3Ccrossref_RIE%3E10_1109_TFUZZ_2024_3373534%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10460142&rfr_iscdi=true