Resilient Topology Design for EV Charging Network Based on Percolation-Fractal Analytics

This letter proposes a complex network theory based analytical model for resilient topology design of electric vehicle charging network (EVCN). In particular, percolation-fractal (PF) analytics is adopted in the process of network feature extraction, through which multiple tailor-made indices are co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2024-05, Vol.15 (3), p.3341-3344
Hauptverfasser: Dong, Qianyu, Zhou, Guanyu, Xu, Zhao, Jia, Youwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3344
container_issue 3
container_start_page 3341
container_title IEEE transactions on smart grid
container_volume 15
creator Dong, Qianyu
Zhou, Guanyu
Xu, Zhao
Jia, Youwei
description This letter proposes a complex network theory based analytical model for resilient topology design of electric vehicle charging network (EVCN). In particular, percolation-fractal (PF) analytics is adopted in the process of network feature extraction, through which multiple tailor-made indices are constructed to reflect the topological properties of EVCN. In evaluating the topological resilience, a novel metric is proposed by jointly considering the correlation between load loss and topology properties. On top of this, an EVCN planning model is developed by optimally locating charging stations from network perspective. According to preliminary case studies, this gives rise to an average 22.8% resilience increase at the sacrifice of 3.7% loss in system service ability.
doi_str_mv 10.1109/TSG.2024.3373260
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10459231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10459231</ieee_id><sourcerecordid>3044621987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-92584d716bf0b80fdbf0569f8483f827eb70b7eb76248cc391621e7762fdcfad3</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWGr3LlwEXE_NazLJslZbhaKiVdyFTCYZp46TmkyR_ntTWsS7uC_OuVw-AM4xGmOM5NXyZT4miLAxpQUlHB2BAZZMZhRxfPzX5_QUjGJcoRSUUk7kALw_29i0je16uPRr3_p6C2_Squ6g8wHevsHphw5109XwwfY_PnzCax1tBX0Hn2wwvtV947tsFrTpdQsnnW63fWPiGThxuo12dKhD8Dq7XU7vssXj_H46WWSGsLzPJMkFqwrMS4dKgVyVas6lE0xQJ0hhywKVu8wJE8ZQiTnBtkijq4zTFR2Cy_3ddfDfGxt7tfKbkL6IiiLGklqKIqnQXmWCjzFYp9ah-dJhqzBSO4QqIVQ7hOqAMFku9pbGWvtPznJJKKa_IeVsSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044621987</pqid></control><display><type>article</type><title>Resilient Topology Design for EV Charging Network Based on Percolation-Fractal Analytics</title><source>IEEE Electronic Library (IEL)</source><creator>Dong, Qianyu ; Zhou, Guanyu ; Xu, Zhao ; Jia, Youwei</creator><creatorcontrib>Dong, Qianyu ; Zhou, Guanyu ; Xu, Zhao ; Jia, Youwei</creatorcontrib><description>This letter proposes a complex network theory based analytical model for resilient topology design of electric vehicle charging network (EVCN). In particular, percolation-fractal (PF) analytics is adopted in the process of network feature extraction, through which multiple tailor-made indices are constructed to reflect the topological properties of EVCN. In evaluating the topological resilience, a novel metric is proposed by jointly considering the correlation between load loss and topology properties. On top of this, an EVCN planning model is developed by optimally locating charging stations from network perspective. According to preliminary case studies, this gives rise to an average 22.8% resilience increase at the sacrifice of 3.7% loss in system service ability.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2024.3373260</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>charging station locating ; Charging stations ; Complex networks ; Costs ; Electric vehicle charging ; electric vehicles ; Feature extraction ; Fractal analysis ; Interconnected power-transportation network ; Mathematical analysis ; Mathematical models ; Percolation ; Planning ; Power system dynamics ; Resilience ; resilience analysis ; Topology</subject><ispartof>IEEE transactions on smart grid, 2024-05, Vol.15 (3), p.3341-3344</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-92584d716bf0b80fdbf0569f8483f827eb70b7eb76248cc391621e7762fdcfad3</cites><orcidid>0000-0003-3071-5552 ; 0000-0003-4480-7394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10459231$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10459231$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dong, Qianyu</creatorcontrib><creatorcontrib>Zhou, Guanyu</creatorcontrib><creatorcontrib>Xu, Zhao</creatorcontrib><creatorcontrib>Jia, Youwei</creatorcontrib><title>Resilient Topology Design for EV Charging Network Based on Percolation-Fractal Analytics</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>This letter proposes a complex network theory based analytical model for resilient topology design of electric vehicle charging network (EVCN). In particular, percolation-fractal (PF) analytics is adopted in the process of network feature extraction, through which multiple tailor-made indices are constructed to reflect the topological properties of EVCN. In evaluating the topological resilience, a novel metric is proposed by jointly considering the correlation between load loss and topology properties. On top of this, an EVCN planning model is developed by optimally locating charging stations from network perspective. According to preliminary case studies, this gives rise to an average 22.8% resilience increase at the sacrifice of 3.7% loss in system service ability.</description><subject>charging station locating</subject><subject>Charging stations</subject><subject>Complex networks</subject><subject>Costs</subject><subject>Electric vehicle charging</subject><subject>electric vehicles</subject><subject>Feature extraction</subject><subject>Fractal analysis</subject><subject>Interconnected power-transportation network</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Percolation</subject><subject>Planning</subject><subject>Power system dynamics</subject><subject>Resilience</subject><subject>resilience analysis</subject><subject>Topology</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLAzEUhYMoWGr3LlwEXE_NazLJslZbhaKiVdyFTCYZp46TmkyR_ntTWsS7uC_OuVw-AM4xGmOM5NXyZT4miLAxpQUlHB2BAZZMZhRxfPzX5_QUjGJcoRSUUk7kALw_29i0je16uPRr3_p6C2_Squ6g8wHevsHphw5109XwwfY_PnzCax1tBX0Hn2wwvtV947tsFrTpdQsnnW63fWPiGThxuo12dKhD8Dq7XU7vssXj_H46WWSGsLzPJMkFqwrMS4dKgVyVas6lE0xQJ0hhywKVu8wJE8ZQiTnBtkijq4zTFR2Cy_3ddfDfGxt7tfKbkL6IiiLGklqKIqnQXmWCjzFYp9ah-dJhqzBSO4QqIVQ7hOqAMFku9pbGWvtPznJJKKa_IeVsSw</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Dong, Qianyu</creator><creator>Zhou, Guanyu</creator><creator>Xu, Zhao</creator><creator>Jia, Youwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3071-5552</orcidid><orcidid>https://orcid.org/0000-0003-4480-7394</orcidid></search><sort><creationdate>20240501</creationdate><title>Resilient Topology Design for EV Charging Network Based on Percolation-Fractal Analytics</title><author>Dong, Qianyu ; Zhou, Guanyu ; Xu, Zhao ; Jia, Youwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-92584d716bf0b80fdbf0569f8483f827eb70b7eb76248cc391621e7762fdcfad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>charging station locating</topic><topic>Charging stations</topic><topic>Complex networks</topic><topic>Costs</topic><topic>Electric vehicle charging</topic><topic>electric vehicles</topic><topic>Feature extraction</topic><topic>Fractal analysis</topic><topic>Interconnected power-transportation network</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Percolation</topic><topic>Planning</topic><topic>Power system dynamics</topic><topic>Resilience</topic><topic>resilience analysis</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Qianyu</creatorcontrib><creatorcontrib>Zhou, Guanyu</creatorcontrib><creatorcontrib>Xu, Zhao</creatorcontrib><creatorcontrib>Jia, Youwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong, Qianyu</au><au>Zhou, Guanyu</au><au>Xu, Zhao</au><au>Jia, Youwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resilient Topology Design for EV Charging Network Based on Percolation-Fractal Analytics</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>15</volume><issue>3</issue><spage>3341</spage><epage>3344</epage><pages>3341-3344</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>This letter proposes a complex network theory based analytical model for resilient topology design of electric vehicle charging network (EVCN). In particular, percolation-fractal (PF) analytics is adopted in the process of network feature extraction, through which multiple tailor-made indices are constructed to reflect the topological properties of EVCN. In evaluating the topological resilience, a novel metric is proposed by jointly considering the correlation between load loss and topology properties. On top of this, an EVCN planning model is developed by optimally locating charging stations from network perspective. According to preliminary case studies, this gives rise to an average 22.8% resilience increase at the sacrifice of 3.7% loss in system service ability.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2024.3373260</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-3071-5552</orcidid><orcidid>https://orcid.org/0000-0003-4480-7394</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2024-05, Vol.15 (3), p.3341-3344
issn 1949-3053
1949-3061
language eng
recordid cdi_ieee_primary_10459231
source IEEE Electronic Library (IEL)
subjects charging station locating
Charging stations
Complex networks
Costs
Electric vehicle charging
electric vehicles
Feature extraction
Fractal analysis
Interconnected power-transportation network
Mathematical analysis
Mathematical models
Percolation
Planning
Power system dynamics
Resilience
resilience analysis
Topology
title Resilient Topology Design for EV Charging Network Based on Percolation-Fractal Analytics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A37%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resilient%20Topology%20Design%20for%20EV%20Charging%20Network%20Based%20on%20Percolation-Fractal%20Analytics&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Dong,%20Qianyu&rft.date=2024-05-01&rft.volume=15&rft.issue=3&rft.spage=3341&rft.epage=3344&rft.pages=3341-3344&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2024.3373260&rft_dat=%3Cproquest_RIE%3E3044621987%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044621987&rft_id=info:pmid/&rft_ieee_id=10459231&rfr_iscdi=true