Improved Fault Analysis on Subterranean 2.0

Subterranean 2.0, a NIST second round lightweight cryptographic primitive, was introduced by Daemen et al. in 2020. It has three modes of operation: Subterranean-SAE, Subterranean- deck , and Subterranean-XOF. So far, most of the existing practical-time implementable attacks on Subterranean-SAE fall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers 2024-06, Vol.73 (6), p.1631-1639
Hauptverfasser: Mondal, Sandip Kumar, Dey, Prakash, Roy, Himadry Sekhar, Adhikari, Avishek, Maitra, Subhamoy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1639
container_issue 6
container_start_page 1631
container_title IEEE transactions on computers
container_volume 73
creator Mondal, Sandip Kumar
Dey, Prakash
Roy, Himadry Sekhar
Adhikari, Avishek
Maitra, Subhamoy
description Subterranean 2.0, a NIST second round lightweight cryptographic primitive, was introduced by Daemen et al. in 2020. It has three modes of operation: Subterranean-SAE, Subterranean- deck , and Subterranean-XOF. So far, most of the existing practical-time implementable attacks on Subterranean-SAE fall under the nonce misuse setting scenario. In this paper, we present significantly improved Differential Fault Analysis on Subterranean-SAE and Subterranean- deck . We consider a more challenging framework of unknown fault injection round, and achieve improved execution time as well as data complexity over the best known fault attack available in the literature. We utilize deep neural networks and also correlation coefficient for generation of signatures and matching them. Two general frameworks are proposed for fault location identification assuming that fault injection round is unknown. Finally, we use a SAT SAT solver to efficiently recover the embedded encryption key with no more than \mathbf{5} 5 distinct faults. Experimental results reveal that the total time (online phase) required to mount the attack on Subterranean-SAE (Subterranean- deck ) is 1234.6 (1334.6) seconds.
doi_str_mv 10.1109/TC.2024.3371784
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10459055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10459055</ieee_id><sourcerecordid>3053297272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-de9dd3ad3c246c6abd87de872d233beee226a374dc3afac5920644a515211f123</originalsourceid><addsrcrecordid>eNpNkDFrwzAQhUVpoWnauUsHQ8di53QnWdYYTNMGAh3qzkKxZEhI7FSyC_n3dUiGTMfBe4-Pj7FnDhnnoGdVmSGgyIgUV4W4YRMupUq1lvktmwDwItUk4J49xLgFgBxBT9jbcn8I3Z93ycIOuz6Zt3Z3jJuYdG3yPax7H4JtvW0TzOCR3TV2F_3T5U7Zz-K9Kj_T1dfHspyv0hqF6FPntXNkHY1vXud27QrlfKHQIdHae4-YW1LC1WQbW0uNkAthJZfIecORpuz1vDuS_Q4-9mbbDWEEi4ZAEmqF6pSanVN16GIMvjGHsNnbcDQczMmIqUpzMmIuRsbGy7mxGSGu0kJqkJL-AZiaWl8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053297272</pqid></control><display><type>article</type><title>Improved Fault Analysis on Subterranean 2.0</title><source>IEL</source><creator>Mondal, Sandip Kumar ; Dey, Prakash ; Roy, Himadry Sekhar ; Adhikari, Avishek ; Maitra, Subhamoy</creator><creatorcontrib>Mondal, Sandip Kumar ; Dey, Prakash ; Roy, Himadry Sekhar ; Adhikari, Avishek ; Maitra, Subhamoy</creatorcontrib><description><![CDATA[Subterranean 2.0, a NIST second round lightweight cryptographic primitive, was introduced by Daemen et al. in 2020. It has three modes of operation: Subterranean-SAE, Subterranean- deck , and Subterranean-XOF. So far, most of the existing practical-time implementable attacks on Subterranean-SAE fall under the nonce misuse setting scenario. In this paper, we present significantly improved Differential Fault Analysis on Subterranean-SAE and Subterranean- deck . We consider a more challenging framework of unknown fault injection round, and achieve improved execution time as well as data complexity over the best known fault attack available in the literature. We utilize deep neural networks and also correlation coefficient for generation of signatures and matching them. Two general frameworks are proposed for fault location identification assuming that fault injection round is unknown. Finally, we use a <inline-formula><tex-math notation="LaTeX">SAT</tex-math> <mml:math><mml:mi>S</mml:mi><mml:mi>A</mml:mi><mml:mi>T</mml:mi></mml:math><inline-graphic xlink:href="mondal-ieq1-3371784.gif"/> </inline-formula> solver to efficiently recover the embedded encryption key with no more than <inline-formula><tex-math notation="LaTeX">\mathbf{5}</tex-math> <mml:math><mml:mrow><mml:mn mathvariant="bold">5</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="mondal-ieq2-3371784.gif"/> </inline-formula> distinct faults. Experimental results reveal that the total time (online phase) required to mount the attack on Subterranean-SAE (Subterranean- deck ) is 1234.6 (1334.6) seconds.]]></description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2024.3371784</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Ciphers ; Computers ; Correlation coefficient ; Correlation coefficients ; Cryptography ; Decks ; Encryption ; Fault analysis ; Fault location ; neural network ; Registers ; signature ; Time complexity</subject><ispartof>IEEE transactions on computers, 2024-06, Vol.73 (6), p.1631-1639</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-de9dd3ad3c246c6abd87de872d233beee226a374dc3afac5920644a515211f123</cites><orcidid>0000-0002-8348-7971 ; 0000-0002-7768-4629 ; 0009-0006-9400-8223 ; 0000-0001-6738-4166 ; 0000-0002-1910-8105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10459055$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10459055$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mondal, Sandip Kumar</creatorcontrib><creatorcontrib>Dey, Prakash</creatorcontrib><creatorcontrib>Roy, Himadry Sekhar</creatorcontrib><creatorcontrib>Adhikari, Avishek</creatorcontrib><creatorcontrib>Maitra, Subhamoy</creatorcontrib><title>Improved Fault Analysis on Subterranean 2.0</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description><![CDATA[Subterranean 2.0, a NIST second round lightweight cryptographic primitive, was introduced by Daemen et al. in 2020. It has three modes of operation: Subterranean-SAE, Subterranean- deck , and Subterranean-XOF. So far, most of the existing practical-time implementable attacks on Subterranean-SAE fall under the nonce misuse setting scenario. In this paper, we present significantly improved Differential Fault Analysis on Subterranean-SAE and Subterranean- deck . We consider a more challenging framework of unknown fault injection round, and achieve improved execution time as well as data complexity over the best known fault attack available in the literature. We utilize deep neural networks and also correlation coefficient for generation of signatures and matching them. Two general frameworks are proposed for fault location identification assuming that fault injection round is unknown. Finally, we use a <inline-formula><tex-math notation="LaTeX">SAT</tex-math> <mml:math><mml:mi>S</mml:mi><mml:mi>A</mml:mi><mml:mi>T</mml:mi></mml:math><inline-graphic xlink:href="mondal-ieq1-3371784.gif"/> </inline-formula> solver to efficiently recover the embedded encryption key with no more than <inline-formula><tex-math notation="LaTeX">\mathbf{5}</tex-math> <mml:math><mml:mrow><mml:mn mathvariant="bold">5</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="mondal-ieq2-3371784.gif"/> </inline-formula> distinct faults. Experimental results reveal that the total time (online phase) required to mount the attack on Subterranean-SAE (Subterranean- deck ) is 1234.6 (1334.6) seconds.]]></description><subject>Artificial neural networks</subject><subject>Ciphers</subject><subject>Computers</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Cryptography</subject><subject>Decks</subject><subject>Encryption</subject><subject>Fault analysis</subject><subject>Fault location</subject><subject>neural network</subject><subject>Registers</subject><subject>signature</subject><subject>Time complexity</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDFrwzAQhUVpoWnauUsHQ8di53QnWdYYTNMGAh3qzkKxZEhI7FSyC_n3dUiGTMfBe4-Pj7FnDhnnoGdVmSGgyIgUV4W4YRMupUq1lvktmwDwItUk4J49xLgFgBxBT9jbcn8I3Z93ycIOuz6Zt3Z3jJuYdG3yPax7H4JtvW0TzOCR3TV2F_3T5U7Zz-K9Kj_T1dfHspyv0hqF6FPntXNkHY1vXud27QrlfKHQIdHae4-YW1LC1WQbW0uNkAthJZfIecORpuz1vDuS_Q4-9mbbDWEEi4ZAEmqF6pSanVN16GIMvjGHsNnbcDQczMmIqUpzMmIuRsbGy7mxGSGu0kJqkJL-AZiaWl8</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Mondal, Sandip Kumar</creator><creator>Dey, Prakash</creator><creator>Roy, Himadry Sekhar</creator><creator>Adhikari, Avishek</creator><creator>Maitra, Subhamoy</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8348-7971</orcidid><orcidid>https://orcid.org/0000-0002-7768-4629</orcidid><orcidid>https://orcid.org/0009-0006-9400-8223</orcidid><orcidid>https://orcid.org/0000-0001-6738-4166</orcidid><orcidid>https://orcid.org/0000-0002-1910-8105</orcidid></search><sort><creationdate>20240601</creationdate><title>Improved Fault Analysis on Subterranean 2.0</title><author>Mondal, Sandip Kumar ; Dey, Prakash ; Roy, Himadry Sekhar ; Adhikari, Avishek ; Maitra, Subhamoy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-de9dd3ad3c246c6abd87de872d233beee226a374dc3afac5920644a515211f123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Ciphers</topic><topic>Computers</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Cryptography</topic><topic>Decks</topic><topic>Encryption</topic><topic>Fault analysis</topic><topic>Fault location</topic><topic>neural network</topic><topic>Registers</topic><topic>signature</topic><topic>Time complexity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mondal, Sandip Kumar</creatorcontrib><creatorcontrib>Dey, Prakash</creatorcontrib><creatorcontrib>Roy, Himadry Sekhar</creatorcontrib><creatorcontrib>Adhikari, Avishek</creatorcontrib><creatorcontrib>Maitra, Subhamoy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mondal, Sandip Kumar</au><au>Dey, Prakash</au><au>Roy, Himadry Sekhar</au><au>Adhikari, Avishek</au><au>Maitra, Subhamoy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Fault Analysis on Subterranean 2.0</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>73</volume><issue>6</issue><spage>1631</spage><epage>1639</epage><pages>1631-1639</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract><![CDATA[Subterranean 2.0, a NIST second round lightweight cryptographic primitive, was introduced by Daemen et al. in 2020. It has three modes of operation: Subterranean-SAE, Subterranean- deck , and Subterranean-XOF. So far, most of the existing practical-time implementable attacks on Subterranean-SAE fall under the nonce misuse setting scenario. In this paper, we present significantly improved Differential Fault Analysis on Subterranean-SAE and Subterranean- deck . We consider a more challenging framework of unknown fault injection round, and achieve improved execution time as well as data complexity over the best known fault attack available in the literature. We utilize deep neural networks and also correlation coefficient for generation of signatures and matching them. Two general frameworks are proposed for fault location identification assuming that fault injection round is unknown. Finally, we use a <inline-formula><tex-math notation="LaTeX">SAT</tex-math> <mml:math><mml:mi>S</mml:mi><mml:mi>A</mml:mi><mml:mi>T</mml:mi></mml:math><inline-graphic xlink:href="mondal-ieq1-3371784.gif"/> </inline-formula> solver to efficiently recover the embedded encryption key with no more than <inline-formula><tex-math notation="LaTeX">\mathbf{5}</tex-math> <mml:math><mml:mrow><mml:mn mathvariant="bold">5</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="mondal-ieq2-3371784.gif"/> </inline-formula> distinct faults. Experimental results reveal that the total time (online phase) required to mount the attack on Subterranean-SAE (Subterranean- deck ) is 1234.6 (1334.6) seconds.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TC.2024.3371784</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8348-7971</orcidid><orcidid>https://orcid.org/0000-0002-7768-4629</orcidid><orcidid>https://orcid.org/0009-0006-9400-8223</orcidid><orcidid>https://orcid.org/0000-0001-6738-4166</orcidid><orcidid>https://orcid.org/0000-0002-1910-8105</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9340
ispartof IEEE transactions on computers, 2024-06, Vol.73 (6), p.1631-1639
issn 0018-9340
1557-9956
language eng
recordid cdi_ieee_primary_10459055
source IEL
subjects Artificial neural networks
Ciphers
Computers
Correlation coefficient
Correlation coefficients
Cryptography
Decks
Encryption
Fault analysis
Fault location
neural network
Registers
signature
Time complexity
title Improved Fault Analysis on Subterranean 2.0
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Fault%20Analysis%20on%20Subterranean%202.0&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Mondal,%20Sandip%20Kumar&rft.date=2024-06-01&rft.volume=73&rft.issue=6&rft.spage=1631&rft.epage=1639&rft.pages=1631-1639&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2024.3371784&rft_dat=%3Cproquest_RIE%3E3053297272%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053297272&rft_id=info:pmid/&rft_ieee_id=10459055&rfr_iscdi=true