Energy-Efficient UAV Scheduling and Probabilistic Task Offloading for Digital Twin-Empowered Consumer Electronics Industry

The digital twin (DT)-powered consumer electronics industry has been proposed to create virtual representations of the physical products, manufacturing processes, and manufacturing systems, and to enable manufacturers to truly promote the development of smart manufacturing of consumer electronics. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on consumer electronics 2024-02, Vol.70 (1), p.2145-2154
Hauptverfasser: Huang, Xumin, Zhang, Yang, Qi, Yuanhang, Huang, Caishi, Hossain, M. Shamim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2154
container_issue 1
container_start_page 2145
container_title IEEE transactions on consumer electronics
container_volume 70
creator Huang, Xumin
Zhang, Yang
Qi, Yuanhang
Huang, Caishi
Hossain, M. Shamim
description The digital twin (DT)-powered consumer electronics industry has been proposed to create virtual representations of the physical products, manufacturing processes, and manufacturing systems, and to enable manufacturers to truly promote the development of smart manufacturing of consumer electronics. This gives rise to the DT-empowered consumer electronics industry, which relies on massive data from Industrial Internet of Things (IIoT) devices to update a DT of an entire manufacturing system consisting of different manufacturing processes of consumer electronics. To this end, we employ unmanned aerial vehicles (UAVs) to collect data reports of the IIoT devices while providing aerial computing for them when necessary. We investigate energy-efficient UAV scheduling and probabilistic task offloading for the DT-empowered consumer electronics industry. More specifically, the UAV scheduling problem is formulated to properly dispatch the UAVs to different mission areas to minimize the total energy consumption of all UAVs. After that, we utilize a Stackelberg game approach to study the task offloading and service pricing when a UAV provides offloading services for the IIoT devices under demand uncertainty. Numerical results show that the proposed schemes show superiority to the baseline schemes in reducing the total energy consumption of the UAVs and increasing the economic benefits of the UAV-enabled offloading services.
doi_str_mv 10.1109/TCE.2024.3372785
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10458879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10458879</ieee_id><sourcerecordid>3049491783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-81176e4b5cb19006d452c1171b9cfe3855dd2ee939f182197e4129c73f7546db3</originalsourceid><addsrcrecordid>eNpNkEtLAzEURoMoWB97Fy4Crqcmk6RJllJHLQgKVrfDTHJTo9OkJjNI_fVOqQtXFy7nu4-D0AUlU0qJvl7Oq2lJSj5lTJZSiQM0oUKogtNSHqIJIVoVjMzYMTrJ-YMQykWpJuinCpBW26JyzhsPocevN2_4xbyDHTofVrgJFj-n2Dat73zuvcHLJn_iJ-e62Ngd4WLCt37l-6bDy28fimq9id-QwOJ5DHlYQ8JVB6ZPMXiT8SLYIfdpe4aOXNNlOP-rp-j1rlrOH4rHp_vF_OaxMCUXfaEolTPgrTAt1YTM7Hi4GXu01cYBU0JYWwJoph1VJdUSxpe1kcxJwWe2Zafoaj93k-LXALmvP-KQwriyZoRrrqlUbKTInjIp5pzA1Zvk103a1pTUO8P1aLjeGa7_DI-Ry33EA8A_nAulpGa_3Dh35w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049491783</pqid></control><display><type>article</type><title>Energy-Efficient UAV Scheduling and Probabilistic Task Offloading for Digital Twin-Empowered Consumer Electronics Industry</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Xumin ; Zhang, Yang ; Qi, Yuanhang ; Huang, Caishi ; Hossain, M. Shamim</creator><creatorcontrib>Huang, Xumin ; Zhang, Yang ; Qi, Yuanhang ; Huang, Caishi ; Hossain, M. Shamim</creatorcontrib><description>The digital twin (DT)-powered consumer electronics industry has been proposed to create virtual representations of the physical products, manufacturing processes, and manufacturing systems, and to enable manufacturers to truly promote the development of smart manufacturing of consumer electronics. This gives rise to the DT-empowered consumer electronics industry, which relies on massive data from Industrial Internet of Things (IIoT) devices to update a DT of an entire manufacturing system consisting of different manufacturing processes of consumer electronics. To this end, we employ unmanned aerial vehicles (UAVs) to collect data reports of the IIoT devices while providing aerial computing for them when necessary. We investigate energy-efficient UAV scheduling and probabilistic task offloading for the DT-empowered consumer electronics industry. More specifically, the UAV scheduling problem is formulated to properly dispatch the UAVs to different mission areas to minimize the total energy consumption of all UAVs. After that, we utilize a Stackelberg game approach to study the task offloading and service pricing when a UAV provides offloading services for the IIoT devices under demand uncertainty. Numerical results show that the proposed schemes show superiority to the baseline schemes in reducing the total energy consumption of the UAVs and increasing the economic benefits of the UAV-enabled offloading services.</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2024.3372785</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Autonomous aerial vehicles ; Computation offloading ; Consumer electronics ; consumer electronics industry ; Data collection ; Digital twin ; Digital twins ; Electronics ; Electronics industry ; Energy consumption ; energy-efficient UAV scheduling ; Industrial applications ; Industrial Internet of Things ; Industries ; Internet of Things ; Job shop scheduling ; Manufacturing ; Manufacturing processes ; probabilistic task offloading ; Task analysis ; Task scheduling ; UAV ; Unmanned aerial vehicles</subject><ispartof>IEEE transactions on consumer electronics, 2024-02, Vol.70 (1), p.2145-2154</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-81176e4b5cb19006d452c1171b9cfe3855dd2ee939f182197e4129c73f7546db3</cites><orcidid>0000-0003-4336-8625 ; 0000-0001-5906-9422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10458879$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10458879$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Xumin</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Qi, Yuanhang</creatorcontrib><creatorcontrib>Huang, Caishi</creatorcontrib><creatorcontrib>Hossain, M. Shamim</creatorcontrib><title>Energy-Efficient UAV Scheduling and Probabilistic Task Offloading for Digital Twin-Empowered Consumer Electronics Industry</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>The digital twin (DT)-powered consumer electronics industry has been proposed to create virtual representations of the physical products, manufacturing processes, and manufacturing systems, and to enable manufacturers to truly promote the development of smart manufacturing of consumer electronics. This gives rise to the DT-empowered consumer electronics industry, which relies on massive data from Industrial Internet of Things (IIoT) devices to update a DT of an entire manufacturing system consisting of different manufacturing processes of consumer electronics. To this end, we employ unmanned aerial vehicles (UAVs) to collect data reports of the IIoT devices while providing aerial computing for them when necessary. We investigate energy-efficient UAV scheduling and probabilistic task offloading for the DT-empowered consumer electronics industry. More specifically, the UAV scheduling problem is formulated to properly dispatch the UAVs to different mission areas to minimize the total energy consumption of all UAVs. After that, we utilize a Stackelberg game approach to study the task offloading and service pricing when a UAV provides offloading services for the IIoT devices under demand uncertainty. Numerical results show that the proposed schemes show superiority to the baseline schemes in reducing the total energy consumption of the UAVs and increasing the economic benefits of the UAV-enabled offloading services.</description><subject>Autonomous aerial vehicles</subject><subject>Computation offloading</subject><subject>Consumer electronics</subject><subject>consumer electronics industry</subject><subject>Data collection</subject><subject>Digital twin</subject><subject>Digital twins</subject><subject>Electronics</subject><subject>Electronics industry</subject><subject>Energy consumption</subject><subject>energy-efficient UAV scheduling</subject><subject>Industrial applications</subject><subject>Industrial Internet of Things</subject><subject>Industries</subject><subject>Internet of Things</subject><subject>Job shop scheduling</subject><subject>Manufacturing</subject><subject>Manufacturing processes</subject><subject>probabilistic task offloading</subject><subject>Task analysis</subject><subject>Task scheduling</subject><subject>UAV</subject><subject>Unmanned aerial vehicles</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLAzEURoMoWB97Fy4Crqcmk6RJllJHLQgKVrfDTHJTo9OkJjNI_fVOqQtXFy7nu4-D0AUlU0qJvl7Oq2lJSj5lTJZSiQM0oUKogtNSHqIJIVoVjMzYMTrJ-YMQykWpJuinCpBW26JyzhsPocevN2_4xbyDHTofVrgJFj-n2Dat73zuvcHLJn_iJ-e62Ngd4WLCt37l-6bDy28fimq9id-QwOJ5DHlYQ8JVB6ZPMXiT8SLYIfdpe4aOXNNlOP-rp-j1rlrOH4rHp_vF_OaxMCUXfaEolTPgrTAt1YTM7Hi4GXu01cYBU0JYWwJoph1VJdUSxpe1kcxJwWe2Zafoaj93k-LXALmvP-KQwriyZoRrrqlUbKTInjIp5pzA1Zvk103a1pTUO8P1aLjeGa7_DI-Ry33EA8A_nAulpGa_3Dh35w</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Huang, Xumin</creator><creator>Zhang, Yang</creator><creator>Qi, Yuanhang</creator><creator>Huang, Caishi</creator><creator>Hossain, M. Shamim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4336-8625</orcidid><orcidid>https://orcid.org/0000-0001-5906-9422</orcidid></search><sort><creationdate>20240201</creationdate><title>Energy-Efficient UAV Scheduling and Probabilistic Task Offloading for Digital Twin-Empowered Consumer Electronics Industry</title><author>Huang, Xumin ; Zhang, Yang ; Qi, Yuanhang ; Huang, Caishi ; Hossain, M. Shamim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-81176e4b5cb19006d452c1171b9cfe3855dd2ee939f182197e4129c73f7546db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autonomous aerial vehicles</topic><topic>Computation offloading</topic><topic>Consumer electronics</topic><topic>consumer electronics industry</topic><topic>Data collection</topic><topic>Digital twin</topic><topic>Digital twins</topic><topic>Electronics</topic><topic>Electronics industry</topic><topic>Energy consumption</topic><topic>energy-efficient UAV scheduling</topic><topic>Industrial applications</topic><topic>Industrial Internet of Things</topic><topic>Industries</topic><topic>Internet of Things</topic><topic>Job shop scheduling</topic><topic>Manufacturing</topic><topic>Manufacturing processes</topic><topic>probabilistic task offloading</topic><topic>Task analysis</topic><topic>Task scheduling</topic><topic>UAV</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xumin</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Qi, Yuanhang</creatorcontrib><creatorcontrib>Huang, Caishi</creatorcontrib><creatorcontrib>Hossain, M. Shamim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Xumin</au><au>Zhang, Yang</au><au>Qi, Yuanhang</au><au>Huang, Caishi</au><au>Hossain, M. Shamim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Efficient UAV Scheduling and Probabilistic Task Offloading for Digital Twin-Empowered Consumer Electronics Industry</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>70</volume><issue>1</issue><spage>2145</spage><epage>2154</epage><pages>2145-2154</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>The digital twin (DT)-powered consumer electronics industry has been proposed to create virtual representations of the physical products, manufacturing processes, and manufacturing systems, and to enable manufacturers to truly promote the development of smart manufacturing of consumer electronics. This gives rise to the DT-empowered consumer electronics industry, which relies on massive data from Industrial Internet of Things (IIoT) devices to update a DT of an entire manufacturing system consisting of different manufacturing processes of consumer electronics. To this end, we employ unmanned aerial vehicles (UAVs) to collect data reports of the IIoT devices while providing aerial computing for them when necessary. We investigate energy-efficient UAV scheduling and probabilistic task offloading for the DT-empowered consumer electronics industry. More specifically, the UAV scheduling problem is formulated to properly dispatch the UAVs to different mission areas to minimize the total energy consumption of all UAVs. After that, we utilize a Stackelberg game approach to study the task offloading and service pricing when a UAV provides offloading services for the IIoT devices under demand uncertainty. Numerical results show that the proposed schemes show superiority to the baseline schemes in reducing the total energy consumption of the UAVs and increasing the economic benefits of the UAV-enabled offloading services.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCE.2024.3372785</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4336-8625</orcidid><orcidid>https://orcid.org/0000-0001-5906-9422</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0098-3063
ispartof IEEE transactions on consumer electronics, 2024-02, Vol.70 (1), p.2145-2154
issn 0098-3063
1558-4127
language eng
recordid cdi_ieee_primary_10458879
source IEEE Electronic Library (IEL)
subjects Autonomous aerial vehicles
Computation offloading
Consumer electronics
consumer electronics industry
Data collection
Digital twin
Digital twins
Electronics
Electronics industry
Energy consumption
energy-efficient UAV scheduling
Industrial applications
Industrial Internet of Things
Industries
Internet of Things
Job shop scheduling
Manufacturing
Manufacturing processes
probabilistic task offloading
Task analysis
Task scheduling
UAV
Unmanned aerial vehicles
title Energy-Efficient UAV Scheduling and Probabilistic Task Offloading for Digital Twin-Empowered Consumer Electronics Industry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Efficient%20UAV%20Scheduling%20and%20Probabilistic%20Task%20Offloading%20for%20Digital%20Twin-Empowered%20Consumer%20Electronics%20Industry&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Huang,%20Xumin&rft.date=2024-02-01&rft.volume=70&rft.issue=1&rft.spage=2145&rft.epage=2154&rft.pages=2145-2154&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2024.3372785&rft_dat=%3Cproquest_RIE%3E3049491783%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049491783&rft_id=info:pmid/&rft_ieee_id=10458879&rfr_iscdi=true