Optimizing Virtual Functions Deployment in Multi-UAV IoT Networks

In Internet of Things (IoT) networks, unmanned aerial vehicles (UAVs) play a critical role as mobile nodes that can be deployed to carry out data collection and computation. In this respect, this article considers an operator that deploys UAVs to satisfy requests from IoT applications that require v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2024-06, Vol.11 (11), p.20367-20378
Hauptverfasser: Forghani, Athena, Chin, Kwan-Wu, Ros, Montserrat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20378
container_issue 11
container_start_page 20367
container_title IEEE internet of things journal
container_volume 11
creator Forghani, Athena
Chin, Kwan-Wu
Ros, Montserrat
description In Internet of Things (IoT) networks, unmanned aerial vehicles (UAVs) play a critical role as mobile nodes that can be deployed to carry out data collection and computation. In this respect, this article considers an operator that deploys UAVs to satisfy requests from IoT applications that require virtual network functions (VNFs) that may communicate with one another to be executed at different geographical locations. To this end, this article formulates a novel mixed-integer linear program (MILP) to determine the optimal assignments of UAVs and VNFs over a planning horizon that maximizes a given performance metric, e.g., revenue. It also outlines a heuristic method named MPopLoc that chooses requests according to popular requested locations and traveling cost of UAVs. The results show that MPopLoc achieved approximately 95.14% of the optimal result.
doi_str_mv 10.1109/JIOT.2024.3371468
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10454602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10454602</ieee_id><sourcerecordid>3058292502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-c85a58f5b9a3ce93d67c00d302c15e23db6cd6f817d8e9c56b053c23f934aad73</originalsourceid><addsrcrecordid>eNpNkM9PwjAYhhujiQT5A0w8NPE87I-1W48ERTEol8G16brOFMc62y4G_3pH4MDpew_v837JA8A9RlOMkXh6X66LKUEknVKa4ZTnV2BEKMmSlHNyfZFvwSSEHUJowBgWfARm6y7avf2z7RfcWh971cBF3-poXRvgs-kad9ibNkLbwo--iTbZzLZw6Qr4aeKv89_hDtzUqglmcr5jsFm8FPO3ZLV-Xc5nq0TjjMdE50yxvGalUFQbQSueaYQqiojGzBBalVxXvM5xVuVGaMZLxKgmtBY0VarK6Bg8nnY77356E6Lcud63w0tJEcuJIAyRoYVPLe1dCN7UsvN2r_xBYiSPsuRRljzKkmdZA_NwYqwx5qKfspQPk_9Vt2Ta</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3058292502</pqid></control><display><type>article</type><title>Optimizing Virtual Functions Deployment in Multi-UAV IoT Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Forghani, Athena ; Chin, Kwan-Wu ; Ros, Montserrat</creator><creatorcontrib>Forghani, Athena ; Chin, Kwan-Wu ; Ros, Montserrat</creatorcontrib><description>In Internet of Things (IoT) networks, unmanned aerial vehicles (UAVs) play a critical role as mobile nodes that can be deployed to carry out data collection and computation. In this respect, this article considers an operator that deploys UAVs to satisfy requests from IoT applications that require virtual network functions (VNFs) that may communicate with one another to be executed at different geographical locations. To this end, this article formulates a novel mixed-integer linear program (MILP) to determine the optimal assignments of UAVs and VNFs over a planning horizon that maximizes a given performance metric, e.g., revenue. It also outlines a heuristic method named MPopLoc that chooses requests according to popular requested locations and traveling cost of UAVs. The results show that MPopLoc achieved approximately 95.14% of the optimal result.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3371468</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithm ; Autonomous aerial vehicles ; Cloud computing ; Containers ; drone ; Geographical locations ; Heuristic methods ; Integer programming ; Internet of Things ; Linear programming ; Mixed integer ; Monitoring ; network design ; Optimization ; service ; Unmanned aerial vehicles ; Virtual links ; virtual machines ; Virtual networks ; Virtualization</subject><ispartof>IEEE internet of things journal, 2024-06, Vol.11 (11), p.20367-20378</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-c85a58f5b9a3ce93d67c00d302c15e23db6cd6f817d8e9c56b053c23f934aad73</cites><orcidid>0000-0003-1547-9272 ; 0000-0001-6267-9897 ; 0000-0002-5598-7987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10454602$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10454602$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Forghani, Athena</creatorcontrib><creatorcontrib>Chin, Kwan-Wu</creatorcontrib><creatorcontrib>Ros, Montserrat</creatorcontrib><title>Optimizing Virtual Functions Deployment in Multi-UAV IoT Networks</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>In Internet of Things (IoT) networks, unmanned aerial vehicles (UAVs) play a critical role as mobile nodes that can be deployed to carry out data collection and computation. In this respect, this article considers an operator that deploys UAVs to satisfy requests from IoT applications that require virtual network functions (VNFs) that may communicate with one another to be executed at different geographical locations. To this end, this article formulates a novel mixed-integer linear program (MILP) to determine the optimal assignments of UAVs and VNFs over a planning horizon that maximizes a given performance metric, e.g., revenue. It also outlines a heuristic method named MPopLoc that chooses requests according to popular requested locations and traveling cost of UAVs. The results show that MPopLoc achieved approximately 95.14% of the optimal result.</description><subject>Algorithm</subject><subject>Autonomous aerial vehicles</subject><subject>Cloud computing</subject><subject>Containers</subject><subject>drone</subject><subject>Geographical locations</subject><subject>Heuristic methods</subject><subject>Integer programming</subject><subject>Internet of Things</subject><subject>Linear programming</subject><subject>Mixed integer</subject><subject>Monitoring</subject><subject>network design</subject><subject>Optimization</subject><subject>service</subject><subject>Unmanned aerial vehicles</subject><subject>Virtual links</subject><subject>virtual machines</subject><subject>Virtual networks</subject><subject>Virtualization</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9PwjAYhhujiQT5A0w8NPE87I-1W48ERTEol8G16brOFMc62y4G_3pH4MDpew_v837JA8A9RlOMkXh6X66LKUEknVKa4ZTnV2BEKMmSlHNyfZFvwSSEHUJowBgWfARm6y7avf2z7RfcWh971cBF3-poXRvgs-kad9ibNkLbwo--iTbZzLZw6Qr4aeKv89_hDtzUqglmcr5jsFm8FPO3ZLV-Xc5nq0TjjMdE50yxvGalUFQbQSueaYQqiojGzBBalVxXvM5xVuVGaMZLxKgmtBY0VarK6Bg8nnY77356E6Lcud63w0tJEcuJIAyRoYVPLe1dCN7UsvN2r_xBYiSPsuRRljzKkmdZA_NwYqwx5qKfspQPk_9Vt2Ta</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Forghani, Athena</creator><creator>Chin, Kwan-Wu</creator><creator>Ros, Montserrat</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1547-9272</orcidid><orcidid>https://orcid.org/0000-0001-6267-9897</orcidid><orcidid>https://orcid.org/0000-0002-5598-7987</orcidid></search><sort><creationdate>20240601</creationdate><title>Optimizing Virtual Functions Deployment in Multi-UAV IoT Networks</title><author>Forghani, Athena ; Chin, Kwan-Wu ; Ros, Montserrat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-c85a58f5b9a3ce93d67c00d302c15e23db6cd6f817d8e9c56b053c23f934aad73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithm</topic><topic>Autonomous aerial vehicles</topic><topic>Cloud computing</topic><topic>Containers</topic><topic>drone</topic><topic>Geographical locations</topic><topic>Heuristic methods</topic><topic>Integer programming</topic><topic>Internet of Things</topic><topic>Linear programming</topic><topic>Mixed integer</topic><topic>Monitoring</topic><topic>network design</topic><topic>Optimization</topic><topic>service</topic><topic>Unmanned aerial vehicles</topic><topic>Virtual links</topic><topic>virtual machines</topic><topic>Virtual networks</topic><topic>Virtualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Forghani, Athena</creatorcontrib><creatorcontrib>Chin, Kwan-Wu</creatorcontrib><creatorcontrib>Ros, Montserrat</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Forghani, Athena</au><au>Chin, Kwan-Wu</au><au>Ros, Montserrat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Virtual Functions Deployment in Multi-UAV IoT Networks</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>11</volume><issue>11</issue><spage>20367</spage><epage>20378</epage><pages>20367-20378</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>In Internet of Things (IoT) networks, unmanned aerial vehicles (UAVs) play a critical role as mobile nodes that can be deployed to carry out data collection and computation. In this respect, this article considers an operator that deploys UAVs to satisfy requests from IoT applications that require virtual network functions (VNFs) that may communicate with one another to be executed at different geographical locations. To this end, this article formulates a novel mixed-integer linear program (MILP) to determine the optimal assignments of UAVs and VNFs over a planning horizon that maximizes a given performance metric, e.g., revenue. It also outlines a heuristic method named MPopLoc that chooses requests according to popular requested locations and traveling cost of UAVs. The results show that MPopLoc achieved approximately 95.14% of the optimal result.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2024.3371468</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1547-9272</orcidid><orcidid>https://orcid.org/0000-0001-6267-9897</orcidid><orcidid>https://orcid.org/0000-0002-5598-7987</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2024-06, Vol.11 (11), p.20367-20378
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_10454602
source IEEE Electronic Library (IEL)
subjects Algorithm
Autonomous aerial vehicles
Cloud computing
Containers
drone
Geographical locations
Heuristic methods
Integer programming
Internet of Things
Linear programming
Mixed integer
Monitoring
network design
Optimization
service
Unmanned aerial vehicles
Virtual links
virtual machines
Virtual networks
Virtualization
title Optimizing Virtual Functions Deployment in Multi-UAV IoT Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A13%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Virtual%20Functions%20Deployment%20in%20Multi-UAV%20IoT%20Networks&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Forghani,%20Athena&rft.date=2024-06-01&rft.volume=11&rft.issue=11&rft.spage=20367&rft.epage=20378&rft.pages=20367-20378&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3371468&rft_dat=%3Cproquest_RIE%3E3058292502%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3058292502&rft_id=info:pmid/&rft_ieee_id=10454602&rfr_iscdi=true