Robust Co-Modeling for Privacy-Preserving Short-Term Load Forecasting With Incongruent Load Data Distributions
Short-term load forecasting (STLF) can support strategies for power retailers. Training based on aggregate load datasets can yield more precise STLF models. In real scenarios, however, retailers can only access the consumer information they serve. The aggregation of their data for centralized foreca...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on smart grid 2024-05, Vol.15 (3), p.2985-2999 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2999 |
---|---|
container_issue | 3 |
container_start_page | 2985 |
container_title | IEEE transactions on smart grid |
container_volume | 15 |
creator | Si, Caomingzhe Wang, Haijin Chen, Lei Zhao, Junhua Min, Yong Xu, Fei |
description | Short-term load forecasting (STLF) can support strategies for power retailers. Training based on aggregate load datasets can yield more precise STLF models. In real scenarios, however, retailers can only access the consumer information they serve. The aggregation of their data for centralized forecasting requires access to private local data, which may lead to potential security concerns. This paper proposes a method namely Privacy-Preserving {k} -means Federated Learning (PPK-Fed), to facilitate STLF co-modeling among retailers. Federated Learning (FL) is founded on the assumption of data consistency, which does not necessarily exist in real datasets. PPK-Fed incorporates {k} -means clustering together with convolutional neural networks into FL. PPK-Fed is proven to reduce the impact of potential data incongruence embedded in retailer local datasets. Besides, to address the sensitivity of the {k} -means prototype to the potential anomalies in the real dataset, PPK-Fed fuses density-based anomaly detection into {k} -means clustering under FL to improve robustness. For further model security, a secure multi-party computation (SMPC) scheme is designed in PPK-Fed. The model validity, privacy-preserving features, and robustness to anomalies have been verified using a real load dataset. |
doi_str_mv | 10.1109/TSG.2024.3371448 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10454597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10454597</ieee_id><sourcerecordid>3044622135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-19618e13b71bd5e8a1f2ed5e96b8606ad88f0c4e152006e6a836f3c8753fed293</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxYMoWGrvHjwEPKfud3aP0motVCy24nHZJJM2pc3W3U2h_70JKeJc5jHz3gz8ougeozHGSD2tV7MxQYSNKU0xY_IqGmDFVEKRwNd_mtPbaOT9DrVFKRVEDaL602aND_HEJu-2gH1Vb-LSunjpqpPJz8nSgQd36sarrXUhWYM7xAtrivjVOsiND93uuwrbeF7ntt64BurQO6YmmHha-eCqrAmVrf1ddFOavYfRpQ-jr9eX9eQtWXzM5pPnRZITxkOClcASMM1SnBUcpMElgVYokUmBhCmkLFHOAHOCkABhJBUlzWXKaQkFUXQYPfZ3j87-NOCD3tnG1e1LTRFjghBMeetCvSt31nsHpT666mDcWWOkO7C6Bas7sPoCto089JEKAP7ZGWdcpfQXvNR0jA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044622135</pqid></control><display><type>article</type><title>Robust Co-Modeling for Privacy-Preserving Short-Term Load Forecasting With Incongruent Load Data Distributions</title><source>IEEE Electronic Library (IEL)</source><creator>Si, Caomingzhe ; Wang, Haijin ; Chen, Lei ; Zhao, Junhua ; Min, Yong ; Xu, Fei</creator><creatorcontrib>Si, Caomingzhe ; Wang, Haijin ; Chen, Lei ; Zhao, Junhua ; Min, Yong ; Xu, Fei</creatorcontrib><description><![CDATA[Short-term load forecasting (STLF) can support strategies for power retailers. Training based on aggregate load datasets can yield more precise STLF models. In real scenarios, however, retailers can only access the consumer information they serve. The aggregation of their data for centralized forecasting requires access to private local data, which may lead to potential security concerns. This paper proposes a method namely Privacy-Preserving <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means Federated Learning (PPK-Fed), to facilitate STLF co-modeling among retailers. Federated Learning (FL) is founded on the assumption of data consistency, which does not necessarily exist in real datasets. PPK-Fed incorporates <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means clustering together with convolutional neural networks into FL. PPK-Fed is proven to reduce the impact of potential data incongruence embedded in retailer local datasets. Besides, to address the sensitivity of the <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means prototype to the potential anomalies in the real dataset, PPK-Fed fuses density-based anomaly detection into <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means clustering under FL to improve robustness. For further model security, a secure multi-party computation (SMPC) scheme is designed in PPK-Fed. The model validity, privacy-preserving features, and robustness to anomalies have been verified using a real load dataset.]]></description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2024.3371448</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Anomalies ; Anomaly detection ; Artificial neural networks ; Clustering ; data incongruence ; Data models ; Data privacy ; Datasets ; Federated learning ; Forecasting ; forecasting co-modeling ; Load modeling ; Long short term memory ; Mathematical models ; model parameter security ; Modelling ; Predictive models ; Privacy ; privacy-preserving ; Retail stores ; Robustness (mathematics) ; Security ; short-term load forecasting ; Training</subject><ispartof>IEEE transactions on smart grid, 2024-05, Vol.15 (3), p.2985-2999</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-19618e13b71bd5e8a1f2ed5e96b8606ad88f0c4e152006e6a836f3c8753fed293</cites><orcidid>0000-0002-1913-0505 ; 0000-0001-5446-2655 ; 0000-0003-2831-8427 ; 0000-0002-4778-4688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10454597$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10454597$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Si, Caomingzhe</creatorcontrib><creatorcontrib>Wang, Haijin</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Zhao, Junhua</creatorcontrib><creatorcontrib>Min, Yong</creatorcontrib><creatorcontrib>Xu, Fei</creatorcontrib><title>Robust Co-Modeling for Privacy-Preserving Short-Term Load Forecasting With Incongruent Load Data Distributions</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description><![CDATA[Short-term load forecasting (STLF) can support strategies for power retailers. Training based on aggregate load datasets can yield more precise STLF models. In real scenarios, however, retailers can only access the consumer information they serve. The aggregation of their data for centralized forecasting requires access to private local data, which may lead to potential security concerns. This paper proposes a method namely Privacy-Preserving <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means Federated Learning (PPK-Fed), to facilitate STLF co-modeling among retailers. Federated Learning (FL) is founded on the assumption of data consistency, which does not necessarily exist in real datasets. PPK-Fed incorporates <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means clustering together with convolutional neural networks into FL. PPK-Fed is proven to reduce the impact of potential data incongruence embedded in retailer local datasets. Besides, to address the sensitivity of the <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means prototype to the potential anomalies in the real dataset, PPK-Fed fuses density-based anomaly detection into <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means clustering under FL to improve robustness. For further model security, a secure multi-party computation (SMPC) scheme is designed in PPK-Fed. The model validity, privacy-preserving features, and robustness to anomalies have been verified using a real load dataset.]]></description><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Artificial neural networks</subject><subject>Clustering</subject><subject>data incongruence</subject><subject>Data models</subject><subject>Data privacy</subject><subject>Datasets</subject><subject>Federated learning</subject><subject>Forecasting</subject><subject>forecasting co-modeling</subject><subject>Load modeling</subject><subject>Long short term memory</subject><subject>Mathematical models</subject><subject>model parameter security</subject><subject>Modelling</subject><subject>Predictive models</subject><subject>Privacy</subject><subject>privacy-preserving</subject><subject>Retail stores</subject><subject>Robustness (mathematics)</subject><subject>Security</subject><subject>short-term load forecasting</subject><subject>Training</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Lw0AQxYMoWGrvHjwEPKfud3aP0motVCy24nHZJJM2pc3W3U2h_70JKeJc5jHz3gz8ougeozHGSD2tV7MxQYSNKU0xY_IqGmDFVEKRwNd_mtPbaOT9DrVFKRVEDaL602aND_HEJu-2gH1Vb-LSunjpqpPJz8nSgQd36sarrXUhWYM7xAtrivjVOsiND93uuwrbeF7ntt64BurQO6YmmHha-eCqrAmVrf1ddFOavYfRpQ-jr9eX9eQtWXzM5pPnRZITxkOClcASMM1SnBUcpMElgVYokUmBhCmkLFHOAHOCkABhJBUlzWXKaQkFUXQYPfZ3j87-NOCD3tnG1e1LTRFjghBMeetCvSt31nsHpT666mDcWWOkO7C6Bas7sPoCto089JEKAP7ZGWdcpfQXvNR0jA</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Si, Caomingzhe</creator><creator>Wang, Haijin</creator><creator>Chen, Lei</creator><creator>Zhao, Junhua</creator><creator>Min, Yong</creator><creator>Xu, Fei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1913-0505</orcidid><orcidid>https://orcid.org/0000-0001-5446-2655</orcidid><orcidid>https://orcid.org/0000-0003-2831-8427</orcidid><orcidid>https://orcid.org/0000-0002-4778-4688</orcidid></search><sort><creationdate>20240501</creationdate><title>Robust Co-Modeling for Privacy-Preserving Short-Term Load Forecasting With Incongruent Load Data Distributions</title><author>Si, Caomingzhe ; Wang, Haijin ; Chen, Lei ; Zhao, Junhua ; Min, Yong ; Xu, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-19618e13b71bd5e8a1f2ed5e96b8606ad88f0c4e152006e6a836f3c8753fed293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Artificial neural networks</topic><topic>Clustering</topic><topic>data incongruence</topic><topic>Data models</topic><topic>Data privacy</topic><topic>Datasets</topic><topic>Federated learning</topic><topic>Forecasting</topic><topic>forecasting co-modeling</topic><topic>Load modeling</topic><topic>Long short term memory</topic><topic>Mathematical models</topic><topic>model parameter security</topic><topic>Modelling</topic><topic>Predictive models</topic><topic>Privacy</topic><topic>privacy-preserving</topic><topic>Retail stores</topic><topic>Robustness (mathematics)</topic><topic>Security</topic><topic>short-term load forecasting</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Si, Caomingzhe</creatorcontrib><creatorcontrib>Wang, Haijin</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Zhao, Junhua</creatorcontrib><creatorcontrib>Min, Yong</creatorcontrib><creatorcontrib>Xu, Fei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Si, Caomingzhe</au><au>Wang, Haijin</au><au>Chen, Lei</au><au>Zhao, Junhua</au><au>Min, Yong</au><au>Xu, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Co-Modeling for Privacy-Preserving Short-Term Load Forecasting With Incongruent Load Data Distributions</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>15</volume><issue>3</issue><spage>2985</spage><epage>2999</epage><pages>2985-2999</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract><![CDATA[Short-term load forecasting (STLF) can support strategies for power retailers. Training based on aggregate load datasets can yield more precise STLF models. In real scenarios, however, retailers can only access the consumer information they serve. The aggregation of their data for centralized forecasting requires access to private local data, which may lead to potential security concerns. This paper proposes a method namely Privacy-Preserving <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means Federated Learning (PPK-Fed), to facilitate STLF co-modeling among retailers. Federated Learning (FL) is founded on the assumption of data consistency, which does not necessarily exist in real datasets. PPK-Fed incorporates <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means clustering together with convolutional neural networks into FL. PPK-Fed is proven to reduce the impact of potential data incongruence embedded in retailer local datasets. Besides, to address the sensitivity of the <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means prototype to the potential anomalies in the real dataset, PPK-Fed fuses density-based anomaly detection into <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means clustering under FL to improve robustness. For further model security, a secure multi-party computation (SMPC) scheme is designed in PPK-Fed. The model validity, privacy-preserving features, and robustness to anomalies have been verified using a real load dataset.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2024.3371448</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1913-0505</orcidid><orcidid>https://orcid.org/0000-0001-5446-2655</orcidid><orcidid>https://orcid.org/0000-0003-2831-8427</orcidid><orcidid>https://orcid.org/0000-0002-4778-4688</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3053 |
ispartof | IEEE transactions on smart grid, 2024-05, Vol.15 (3), p.2985-2999 |
issn | 1949-3053 1949-3061 |
language | eng |
recordid | cdi_ieee_primary_10454597 |
source | IEEE Electronic Library (IEL) |
subjects | Anomalies Anomaly detection Artificial neural networks Clustering data incongruence Data models Data privacy Datasets Federated learning Forecasting forecasting co-modeling Load modeling Long short term memory Mathematical models model parameter security Modelling Predictive models Privacy privacy-preserving Retail stores Robustness (mathematics) Security short-term load forecasting Training |
title | Robust Co-Modeling for Privacy-Preserving Short-Term Load Forecasting With Incongruent Load Data Distributions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Co-Modeling%20for%20Privacy-Preserving%20Short-Term%20Load%20Forecasting%20With%20Incongruent%20Load%20Data%20Distributions&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Si,%20Caomingzhe&rft.date=2024-05-01&rft.volume=15&rft.issue=3&rft.spage=2985&rft.epage=2999&rft.pages=2985-2999&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2024.3371448&rft_dat=%3Cproquest_RIE%3E3044622135%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044622135&rft_id=info:pmid/&rft_ieee_id=10454597&rfr_iscdi=true |