Robust Co-Modeling for Privacy-Preserving Short-Term Load Forecasting With Incongruent Load Data Distributions

Short-term load forecasting (STLF) can support strategies for power retailers. Training based on aggregate load datasets can yield more precise STLF models. In real scenarios, however, retailers can only access the consumer information they serve. The aggregation of their data for centralized foreca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2024-05, Vol.15 (3), p.2985-2999
Hauptverfasser: Si, Caomingzhe, Wang, Haijin, Chen, Lei, Zhao, Junhua, Min, Yong, Xu, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2999
container_issue 3
container_start_page 2985
container_title IEEE transactions on smart grid
container_volume 15
creator Si, Caomingzhe
Wang, Haijin
Chen, Lei
Zhao, Junhua
Min, Yong
Xu, Fei
description Short-term load forecasting (STLF) can support strategies for power retailers. Training based on aggregate load datasets can yield more precise STLF models. In real scenarios, however, retailers can only access the consumer information they serve. The aggregation of their data for centralized forecasting requires access to private local data, which may lead to potential security concerns. This paper proposes a method namely Privacy-Preserving {k} -means Federated Learning (PPK-Fed), to facilitate STLF co-modeling among retailers. Federated Learning (FL) is founded on the assumption of data consistency, which does not necessarily exist in real datasets. PPK-Fed incorporates {k} -means clustering together with convolutional neural networks into FL. PPK-Fed is proven to reduce the impact of potential data incongruence embedded in retailer local datasets. Besides, to address the sensitivity of the {k} -means prototype to the potential anomalies in the real dataset, PPK-Fed fuses density-based anomaly detection into {k} -means clustering under FL to improve robustness. For further model security, a secure multi-party computation (SMPC) scheme is designed in PPK-Fed. The model validity, privacy-preserving features, and robustness to anomalies have been verified using a real load dataset.
doi_str_mv 10.1109/TSG.2024.3371448
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10454597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10454597</ieee_id><sourcerecordid>3044622135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-19618e13b71bd5e8a1f2ed5e96b8606ad88f0c4e152006e6a836f3c8753fed293</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxYMoWGrvHjwEPKfud3aP0motVCy24nHZJJM2pc3W3U2h_70JKeJc5jHz3gz8ougeozHGSD2tV7MxQYSNKU0xY_IqGmDFVEKRwNd_mtPbaOT9DrVFKRVEDaL602aND_HEJu-2gH1Vb-LSunjpqpPJz8nSgQd36sarrXUhWYM7xAtrivjVOsiND93uuwrbeF7ntt64BurQO6YmmHha-eCqrAmVrf1ddFOavYfRpQ-jr9eX9eQtWXzM5pPnRZITxkOClcASMM1SnBUcpMElgVYokUmBhCmkLFHOAHOCkABhJBUlzWXKaQkFUXQYPfZ3j87-NOCD3tnG1e1LTRFjghBMeetCvSt31nsHpT666mDcWWOkO7C6Bas7sPoCto089JEKAP7ZGWdcpfQXvNR0jA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044622135</pqid></control><display><type>article</type><title>Robust Co-Modeling for Privacy-Preserving Short-Term Load Forecasting With Incongruent Load Data Distributions</title><source>IEEE Electronic Library (IEL)</source><creator>Si, Caomingzhe ; Wang, Haijin ; Chen, Lei ; Zhao, Junhua ; Min, Yong ; Xu, Fei</creator><creatorcontrib>Si, Caomingzhe ; Wang, Haijin ; Chen, Lei ; Zhao, Junhua ; Min, Yong ; Xu, Fei</creatorcontrib><description><![CDATA[Short-term load forecasting (STLF) can support strategies for power retailers. Training based on aggregate load datasets can yield more precise STLF models. In real scenarios, however, retailers can only access the consumer information they serve. The aggregation of their data for centralized forecasting requires access to private local data, which may lead to potential security concerns. This paper proposes a method namely Privacy-Preserving <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means Federated Learning (PPK-Fed), to facilitate STLF co-modeling among retailers. Federated Learning (FL) is founded on the assumption of data consistency, which does not necessarily exist in real datasets. PPK-Fed incorporates <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means clustering together with convolutional neural networks into FL. PPK-Fed is proven to reduce the impact of potential data incongruence embedded in retailer local datasets. Besides, to address the sensitivity of the <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means prototype to the potential anomalies in the real dataset, PPK-Fed fuses density-based anomaly detection into <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means clustering under FL to improve robustness. For further model security, a secure multi-party computation (SMPC) scheme is designed in PPK-Fed. The model validity, privacy-preserving features, and robustness to anomalies have been verified using a real load dataset.]]></description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2024.3371448</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Anomalies ; Anomaly detection ; Artificial neural networks ; Clustering ; data incongruence ; Data models ; Data privacy ; Datasets ; Federated learning ; Forecasting ; forecasting co-modeling ; Load modeling ; Long short term memory ; Mathematical models ; model parameter security ; Modelling ; Predictive models ; Privacy ; privacy-preserving ; Retail stores ; Robustness (mathematics) ; Security ; short-term load forecasting ; Training</subject><ispartof>IEEE transactions on smart grid, 2024-05, Vol.15 (3), p.2985-2999</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-19618e13b71bd5e8a1f2ed5e96b8606ad88f0c4e152006e6a836f3c8753fed293</cites><orcidid>0000-0002-1913-0505 ; 0000-0001-5446-2655 ; 0000-0003-2831-8427 ; 0000-0002-4778-4688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10454597$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10454597$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Si, Caomingzhe</creatorcontrib><creatorcontrib>Wang, Haijin</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Zhao, Junhua</creatorcontrib><creatorcontrib>Min, Yong</creatorcontrib><creatorcontrib>Xu, Fei</creatorcontrib><title>Robust Co-Modeling for Privacy-Preserving Short-Term Load Forecasting With Incongruent Load Data Distributions</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description><![CDATA[Short-term load forecasting (STLF) can support strategies for power retailers. Training based on aggregate load datasets can yield more precise STLF models. In real scenarios, however, retailers can only access the consumer information they serve. The aggregation of their data for centralized forecasting requires access to private local data, which may lead to potential security concerns. This paper proposes a method namely Privacy-Preserving <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means Federated Learning (PPK-Fed), to facilitate STLF co-modeling among retailers. Federated Learning (FL) is founded on the assumption of data consistency, which does not necessarily exist in real datasets. PPK-Fed incorporates <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means clustering together with convolutional neural networks into FL. PPK-Fed is proven to reduce the impact of potential data incongruence embedded in retailer local datasets. Besides, to address the sensitivity of the <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means prototype to the potential anomalies in the real dataset, PPK-Fed fuses density-based anomaly detection into <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means clustering under FL to improve robustness. For further model security, a secure multi-party computation (SMPC) scheme is designed in PPK-Fed. The model validity, privacy-preserving features, and robustness to anomalies have been verified using a real load dataset.]]></description><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Artificial neural networks</subject><subject>Clustering</subject><subject>data incongruence</subject><subject>Data models</subject><subject>Data privacy</subject><subject>Datasets</subject><subject>Federated learning</subject><subject>Forecasting</subject><subject>forecasting co-modeling</subject><subject>Load modeling</subject><subject>Long short term memory</subject><subject>Mathematical models</subject><subject>model parameter security</subject><subject>Modelling</subject><subject>Predictive models</subject><subject>Privacy</subject><subject>privacy-preserving</subject><subject>Retail stores</subject><subject>Robustness (mathematics)</subject><subject>Security</subject><subject>short-term load forecasting</subject><subject>Training</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Lw0AQxYMoWGrvHjwEPKfud3aP0motVCy24nHZJJM2pc3W3U2h_70JKeJc5jHz3gz8ougeozHGSD2tV7MxQYSNKU0xY_IqGmDFVEKRwNd_mtPbaOT9DrVFKRVEDaL602aND_HEJu-2gH1Vb-LSunjpqpPJz8nSgQd36sarrXUhWYM7xAtrivjVOsiND93uuwrbeF7ntt64BurQO6YmmHha-eCqrAmVrf1ddFOavYfRpQ-jr9eX9eQtWXzM5pPnRZITxkOClcASMM1SnBUcpMElgVYokUmBhCmkLFHOAHOCkABhJBUlzWXKaQkFUXQYPfZ3j87-NOCD3tnG1e1LTRFjghBMeetCvSt31nsHpT666mDcWWOkO7C6Bas7sPoCto089JEKAP7ZGWdcpfQXvNR0jA</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Si, Caomingzhe</creator><creator>Wang, Haijin</creator><creator>Chen, Lei</creator><creator>Zhao, Junhua</creator><creator>Min, Yong</creator><creator>Xu, Fei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1913-0505</orcidid><orcidid>https://orcid.org/0000-0001-5446-2655</orcidid><orcidid>https://orcid.org/0000-0003-2831-8427</orcidid><orcidid>https://orcid.org/0000-0002-4778-4688</orcidid></search><sort><creationdate>20240501</creationdate><title>Robust Co-Modeling for Privacy-Preserving Short-Term Load Forecasting With Incongruent Load Data Distributions</title><author>Si, Caomingzhe ; Wang, Haijin ; Chen, Lei ; Zhao, Junhua ; Min, Yong ; Xu, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-19618e13b71bd5e8a1f2ed5e96b8606ad88f0c4e152006e6a836f3c8753fed293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Artificial neural networks</topic><topic>Clustering</topic><topic>data incongruence</topic><topic>Data models</topic><topic>Data privacy</topic><topic>Datasets</topic><topic>Federated learning</topic><topic>Forecasting</topic><topic>forecasting co-modeling</topic><topic>Load modeling</topic><topic>Long short term memory</topic><topic>Mathematical models</topic><topic>model parameter security</topic><topic>Modelling</topic><topic>Predictive models</topic><topic>Privacy</topic><topic>privacy-preserving</topic><topic>Retail stores</topic><topic>Robustness (mathematics)</topic><topic>Security</topic><topic>short-term load forecasting</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Si, Caomingzhe</creatorcontrib><creatorcontrib>Wang, Haijin</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Zhao, Junhua</creatorcontrib><creatorcontrib>Min, Yong</creatorcontrib><creatorcontrib>Xu, Fei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Si, Caomingzhe</au><au>Wang, Haijin</au><au>Chen, Lei</au><au>Zhao, Junhua</au><au>Min, Yong</au><au>Xu, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Co-Modeling for Privacy-Preserving Short-Term Load Forecasting With Incongruent Load Data Distributions</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>15</volume><issue>3</issue><spage>2985</spage><epage>2999</epage><pages>2985-2999</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract><![CDATA[Short-term load forecasting (STLF) can support strategies for power retailers. Training based on aggregate load datasets can yield more precise STLF models. In real scenarios, however, retailers can only access the consumer information they serve. The aggregation of their data for centralized forecasting requires access to private local data, which may lead to potential security concerns. This paper proposes a method namely Privacy-Preserving <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means Federated Learning (PPK-Fed), to facilitate STLF co-modeling among retailers. Federated Learning (FL) is founded on the assumption of data consistency, which does not necessarily exist in real datasets. PPK-Fed incorporates <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means clustering together with convolutional neural networks into FL. PPK-Fed is proven to reduce the impact of potential data incongruence embedded in retailer local datasets. Besides, to address the sensitivity of the <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means prototype to the potential anomalies in the real dataset, PPK-Fed fuses density-based anomaly detection into <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means clustering under FL to improve robustness. For further model security, a secure multi-party computation (SMPC) scheme is designed in PPK-Fed. The model validity, privacy-preserving features, and robustness to anomalies have been verified using a real load dataset.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2024.3371448</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1913-0505</orcidid><orcidid>https://orcid.org/0000-0001-5446-2655</orcidid><orcidid>https://orcid.org/0000-0003-2831-8427</orcidid><orcidid>https://orcid.org/0000-0002-4778-4688</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2024-05, Vol.15 (3), p.2985-2999
issn 1949-3053
1949-3061
language eng
recordid cdi_ieee_primary_10454597
source IEEE Electronic Library (IEL)
subjects Anomalies
Anomaly detection
Artificial neural networks
Clustering
data incongruence
Data models
Data privacy
Datasets
Federated learning
Forecasting
forecasting co-modeling
Load modeling
Long short term memory
Mathematical models
model parameter security
Modelling
Predictive models
Privacy
privacy-preserving
Retail stores
Robustness (mathematics)
Security
short-term load forecasting
Training
title Robust Co-Modeling for Privacy-Preserving Short-Term Load Forecasting With Incongruent Load Data Distributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Co-Modeling%20for%20Privacy-Preserving%20Short-Term%20Load%20Forecasting%20With%20Incongruent%20Load%20Data%20Distributions&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Si,%20Caomingzhe&rft.date=2024-05-01&rft.volume=15&rft.issue=3&rft.spage=2985&rft.epage=2999&rft.pages=2985-2999&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2024.3371448&rft_dat=%3Cproquest_RIE%3E3044622135%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044622135&rft_id=info:pmid/&rft_ieee_id=10454597&rfr_iscdi=true