Nowhere to Go: Benchmarking Multirobot Collaboration in Target Trapping Environment

Collaboration is one of the most important factors in multirobot systems. Considering certain real-world applications and to further promote its development, we propose a new benchmark to evaluate multirobot collaboration in target trapping environment (T2E). In T2E, two kinds of robots (called capt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2024-11, Vol.71 (11), p.14430-14439
Hauptverfasser: Zhang, Hao, Chen, Jiaming, Cheng, Jiyu, Li, Yibin, Yang, Simon X., Zhang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14439
container_issue 11
container_start_page 14430
container_title IEEE transactions on industrial electronics (1982)
container_volume 71
creator Zhang, Hao
Chen, Jiaming
Cheng, Jiyu
Li, Yibin
Yang, Simon X.
Zhang, Wei
description Collaboration is one of the most important factors in multirobot systems. Considering certain real-world applications and to further promote its development, we propose a new benchmark to evaluate multirobot collaboration in target trapping environment (T2E). In T2E, two kinds of robots (called captor robot and target robot ) share the same space. The captors aim to catch the target collaboratively, while the target will try to escape from the trap. Both the trapping and escaping process can use the environment layout to help achieve the corresponding objective, which requires high collaboration between robots and the utilization of the environment. For the benchmark, we present and evaluate multiple learning-based baselines in T2E, and provide insights into regimes of multirobot collaboration. We also make our benchmark publicly available and encourage researchers from related robotics disciplines to propose, evaluate, and compare their solutions in this benchmark.
doi_str_mv 10.1109/TIE.2024.3366205
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10454103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10454103</ieee_id><sourcerecordid>3096066829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-a54a56ecfaa52d5deb2c3aa1261ad209437b51fb62a1f503865ffc6c893b8d563</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EEqWwMzBYYk55_kzCBlUplQoMhNlyHKdNSe3guCD-Panageku576nexC6JjAhBPK7YjGbUKB8wpiUFMQJGhEh0iTPeXaKRkDTLAHg8hxd9P0GgHBBxAi9v_qftQ0WR4_n_h4_WmfWWx0-G7fCL7s2NsGXPuKpb1td-qBj4x1uHC50WNmIi6C7bs_O3PeAuq118RKd1brt7dUxx-jjaVZMn5Pl23wxfVgmhmZpTLTgWkhraq0FrURlS2qY1oRKoisKOWdpKUhdSqpJLYBlUtS1kSbLWZlVQrIxuj3c7YL_2tk-qo3fBTe8VAxyCVJmNB8oOFAm-L4PtlZdaIaFv4qA2qtTgzq1V6eO6obKzaHSWGv_4VxwAoz9AaawasM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096066829</pqid></control><display><type>article</type><title>Nowhere to Go: Benchmarking Multirobot Collaboration in Target Trapping Environment</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Hao ; Chen, Jiaming ; Cheng, Jiyu ; Li, Yibin ; Yang, Simon X. ; Zhang, Wei</creator><creatorcontrib>Zhang, Hao ; Chen, Jiaming ; Cheng, Jiyu ; Li, Yibin ; Yang, Simon X. ; Zhang, Wei</creatorcontrib><description>Collaboration is one of the most important factors in multirobot systems. Considering certain real-world applications and to further promote its development, we propose a new benchmark to evaluate multirobot collaboration in target trapping environment (T2E). In T2E, two kinds of robots (called captor robot and target robot ) share the same space. The captors aim to catch the target collaboratively, while the target will try to escape from the trap. Both the trapping and escaping process can use the environment layout to help achieve the corresponding objective, which requires high collaboration between robots and the utilization of the environment. For the benchmark, we present and evaluate multiple learning-based baselines in T2E, and provide insights into regimes of multirobot collaboration. We also make our benchmark publicly available and encourage researchers from related robotics disciplines to propose, evaluate, and compare their solutions in this benchmark.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2024.3366205</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Benchmark testing ; Benchmarks ; Collaboration ; Cooperation ; Force ; Multi-robot systems ; Multiagent reinforcement learning (MARL) ; Multiple robots ; multirobot system ; multirobot target trapping ; Robotics ; Robots ; Service robots ; Task analysis ; Trapping</subject><ispartof>IEEE transactions on industrial electronics (1982), 2024-11, Vol.71 (11), p.14430-14439</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-a54a56ecfaa52d5deb2c3aa1261ad209437b51fb62a1f503865ffc6c893b8d563</cites><orcidid>0000-0003-2235-4101 ; 0000-0002-4960-3190 ; 0000-0003-1393-3670 ; 0000-0002-8063-2547 ; 0000-0002-6888-7993 ; 0000-0002-5906-5074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10454103$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10454103$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Chen, Jiaming</creatorcontrib><creatorcontrib>Cheng, Jiyu</creatorcontrib><creatorcontrib>Li, Yibin</creatorcontrib><creatorcontrib>Yang, Simon X.</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><title>Nowhere to Go: Benchmarking Multirobot Collaboration in Target Trapping Environment</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Collaboration is one of the most important factors in multirobot systems. Considering certain real-world applications and to further promote its development, we propose a new benchmark to evaluate multirobot collaboration in target trapping environment (T2E). In T2E, two kinds of robots (called captor robot and target robot ) share the same space. The captors aim to catch the target collaboratively, while the target will try to escape from the trap. Both the trapping and escaping process can use the environment layout to help achieve the corresponding objective, which requires high collaboration between robots and the utilization of the environment. For the benchmark, we present and evaluate multiple learning-based baselines in T2E, and provide insights into regimes of multirobot collaboration. We also make our benchmark publicly available and encourage researchers from related robotics disciplines to propose, evaluate, and compare their solutions in this benchmark.</description><subject>Benchmark testing</subject><subject>Benchmarks</subject><subject>Collaboration</subject><subject>Cooperation</subject><subject>Force</subject><subject>Multi-robot systems</subject><subject>Multiagent reinforcement learning (MARL)</subject><subject>Multiple robots</subject><subject>multirobot system</subject><subject>multirobot target trapping</subject><subject>Robotics</subject><subject>Robots</subject><subject>Service robots</subject><subject>Task analysis</subject><subject>Trapping</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAURS0EEqWwMzBYYk55_kzCBlUplQoMhNlyHKdNSe3guCD-Panageku576nexC6JjAhBPK7YjGbUKB8wpiUFMQJGhEh0iTPeXaKRkDTLAHg8hxd9P0GgHBBxAi9v_qftQ0WR4_n_h4_WmfWWx0-G7fCL7s2NsGXPuKpb1td-qBj4x1uHC50WNmIi6C7bs_O3PeAuq118RKd1brt7dUxx-jjaVZMn5Pl23wxfVgmhmZpTLTgWkhraq0FrURlS2qY1oRKoisKOWdpKUhdSqpJLYBlUtS1kSbLWZlVQrIxuj3c7YL_2tk-qo3fBTe8VAxyCVJmNB8oOFAm-L4PtlZdaIaFv4qA2qtTgzq1V6eO6obKzaHSWGv_4VxwAoz9AaawasM</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Zhang, Hao</creator><creator>Chen, Jiaming</creator><creator>Cheng, Jiyu</creator><creator>Li, Yibin</creator><creator>Yang, Simon X.</creator><creator>Zhang, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2235-4101</orcidid><orcidid>https://orcid.org/0000-0002-4960-3190</orcidid><orcidid>https://orcid.org/0000-0003-1393-3670</orcidid><orcidid>https://orcid.org/0000-0002-8063-2547</orcidid><orcidid>https://orcid.org/0000-0002-6888-7993</orcidid><orcidid>https://orcid.org/0000-0002-5906-5074</orcidid></search><sort><creationdate>20241101</creationdate><title>Nowhere to Go: Benchmarking Multirobot Collaboration in Target Trapping Environment</title><author>Zhang, Hao ; Chen, Jiaming ; Cheng, Jiyu ; Li, Yibin ; Yang, Simon X. ; Zhang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-a54a56ecfaa52d5deb2c3aa1261ad209437b51fb62a1f503865ffc6c893b8d563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benchmark testing</topic><topic>Benchmarks</topic><topic>Collaboration</topic><topic>Cooperation</topic><topic>Force</topic><topic>Multi-robot systems</topic><topic>Multiagent reinforcement learning (MARL)</topic><topic>Multiple robots</topic><topic>multirobot system</topic><topic>multirobot target trapping</topic><topic>Robotics</topic><topic>Robots</topic><topic>Service robots</topic><topic>Task analysis</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Chen, Jiaming</creatorcontrib><creatorcontrib>Cheng, Jiyu</creatorcontrib><creatorcontrib>Li, Yibin</creatorcontrib><creatorcontrib>Yang, Simon X.</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Hao</au><au>Chen, Jiaming</au><au>Cheng, Jiyu</au><au>Li, Yibin</au><au>Yang, Simon X.</au><au>Zhang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nowhere to Go: Benchmarking Multirobot Collaboration in Target Trapping Environment</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>71</volume><issue>11</issue><spage>14430</spage><epage>14439</epage><pages>14430-14439</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Collaboration is one of the most important factors in multirobot systems. Considering certain real-world applications and to further promote its development, we propose a new benchmark to evaluate multirobot collaboration in target trapping environment (T2E). In T2E, two kinds of robots (called captor robot and target robot ) share the same space. The captors aim to catch the target collaboratively, while the target will try to escape from the trap. Both the trapping and escaping process can use the environment layout to help achieve the corresponding objective, which requires high collaboration between robots and the utilization of the environment. For the benchmark, we present and evaluate multiple learning-based baselines in T2E, and provide insights into regimes of multirobot collaboration. We also make our benchmark publicly available and encourage researchers from related robotics disciplines to propose, evaluate, and compare their solutions in this benchmark.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2024.3366205</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2235-4101</orcidid><orcidid>https://orcid.org/0000-0002-4960-3190</orcidid><orcidid>https://orcid.org/0000-0003-1393-3670</orcidid><orcidid>https://orcid.org/0000-0002-8063-2547</orcidid><orcidid>https://orcid.org/0000-0002-6888-7993</orcidid><orcidid>https://orcid.org/0000-0002-5906-5074</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2024-11, Vol.71 (11), p.14430-14439
issn 0278-0046
1557-9948
language eng
recordid cdi_ieee_primary_10454103
source IEEE Electronic Library (IEL)
subjects Benchmark testing
Benchmarks
Collaboration
Cooperation
Force
Multi-robot systems
Multiagent reinforcement learning (MARL)
Multiple robots
multirobot system
multirobot target trapping
Robotics
Robots
Service robots
Task analysis
Trapping
title Nowhere to Go: Benchmarking Multirobot Collaboration in Target Trapping Environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A44%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nowhere%20to%20Go:%20Benchmarking%20Multirobot%20Collaboration%20in%20Target%20Trapping%20Environment&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Zhang,%20Hao&rft.date=2024-11-01&rft.volume=71&rft.issue=11&rft.spage=14430&rft.epage=14439&rft.pages=14430-14439&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2024.3366205&rft_dat=%3Cproquest_RIE%3E3096066829%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096066829&rft_id=info:pmid/&rft_ieee_id=10454103&rfr_iscdi=true